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Temporal Aspects of Tasks in the User
Action Notation

H. Rex Hartson
Virginia Polytechnic Institute and State University

Philip D. Gray
Glasgow University

—_—

ABSTRACT

The need for communication among a multiplicity of cooperating roles in
user interface development translates into the need for a common set of
interface design representation techniques. The important difference between
design of the interaction part of the interface and design of the interface
software calls for representation techniques with a behavioral view—a view
that focuses on user interaction rather than on the software. The User Action
Notation (UAN) is a user- and task-oriented notation that describes physical
(and other) behavior of the user and interface as they perform a task together.
The primary abstraction of the UAN is a user task.

The work reported here addresses the need to identify temporal relation-
ships within user task descriptions and to express explicitly and precisely how
designers view temporal relationships among those tasks. Drawing on simple
temporal concepts such as events in time and preceding and overlapping of
time intervals, we identify basic temporal relationships among tasks: se-
quence, waiting, repeated disjunction, order independence, interruptibility,

_gne-way interleavability, mutual interleavability, and concurrency. \The
UAN temporal relations, through the notion of modal logic, offer an explicit
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and precise representation of the specific kinds of temporal behavior that can
occur in asynchronous user interaction without the need to detail all cases that
might result.
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Time is nature’s way of keeping everything from happening all at once.
— Unknown

1. INTRODUCTION

The great difficulty many people have in using computers is often due to
a poor design of the human-computer interface. The issue is usability, and
high usability stems from a good design. Good designs invariably depend on
an ability to understand and evaluate (and thereby improve) interface designs
during the development process. Understanding and evaluating designs
depends, in part, on the methods used to represent the designs. Design and
representation are very closely related; design is a creative, mental, problem-
solving process, whereas representation is the physical process of capturing or
recording the design. The need for effective representation techniques is
especially important with new interface development methods that emphasize
iterative refinement and involve a multiplicity of separate but cooperating
roles for producing the interface. These roles include at least designer,
implementer, evaluator, documenter, marketing, customer, and user. Each
of these roles has its own, often different, needs for communicating—
recording, conveying, reading, and understanding — an interface design. This
communication need translates into the need for a common set of interface
design representauion techniques—the mechanism for completely and unam-
biguously capturing an interface design as it evolves through all phases of the
life cycle. Development of a user-centered interface design necessitates that
these techniques have a behavioral view —a view that focuses on the user rather
than on the software.

The UAN has provided an answer to the need for a behavioral represen-
tation technique (Hartson, Siochi, & Hix, 1990; Siochi & Hartson, 1989).
The UAN is a user- and task-oriented notation that describes physical (and
other) behavior of the user and interface as they perform a task together. The
primary abstraction of the UAN is a user task. An interface is represented as
a quasi-hierarchical structure of asynchronous tasks, the sequencing within
each task being independent of that in the others. User actions, corresponding
interface feedback, and state change information are represented at the lowest
level. Levels of abstraction hide these details and build the task structure.

The UAN has been found by many to be expressive and highly readable
because of its simplicity, natural enough so that it is easily read and written
with almost no training. Use within design and implementation projects has
shown the UAN to be effective in conveying large and complex user interface
designs from designers to implementers and evaluators. Because the UAN is
task oriented, it provides a crucial articulation between task analysis and
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4 HARTSON AND GRAY

In addition to the need for a behavioral view, new styles of interaction
involving direct manipulation of graphical objects and icons necessitate
temporal considerations. These interaction styles are more difficult to
represent than the older styles of command languages and menus. User
actions are asynchronous, having more complex temporal behavior than those
of the old style interfaces that were largely constrained to predefined
sequences. Heretofore, representation of temporal relationships has been ad
hoc in the UAN. The work reported here addresses the need to identify more
formally temporal relationships within task descriptions and to express
explicitty and precisely how designers view temporal relationships among
tasks.

We are not proposing a general theory of time or of tasks; we are merely
applying some intuitive physical notions about time and the temporal
properties and relationships of user tasks and computer processes. This is not
a cognitive model of time (even though it refers to user’s behavior), and none
of our inferences or conclusions depends on features that are inconsistent with
other views of time.

Out of the many logically possible temporal relationships among tasks that
people carry out using computers, we have identified several that we believe
to be fundamental to describing interaction (e.g., sequencing, interrupting,
and interleaving). These notions are not new to designers of interactive
systems, but their use has often been informal and imprecise. It is our hope
that clear and precise definitions of these concepts will provide a foundation
on which to reason about the temporal characteristics of interaction between
users and computer systems.

A word is in order here about the structure of this article. We have used a
top-down approach, often mandated by formal documentation of technical
concepts. This approach has the advantage that it weaves the whole article
into a connected development of concepts and definitions, defining each term
before it is used. The disadvantage, however, is that this approach necessarily
defers the “real content” until the end. The first five sections present
introduction and motivation. The temporal relations themselves are discussed
in Section 9, with Sections 6, 7, and 8 building a foundation of definitional
fabric on which Section 9 is laid.

Those desiring a full logical development should read this article in the
order in which it appears. A reader interested only in gaining intuitive
knowledge of the temporal relations can skip Sections 6, 7, and 8; can begin
with Section 9; or can read only Section 9. This reader, however, must expect
to encounter many terms lacking a formal definition. As a further guide for
the reader, equations in the article are numbered and set off from the text.
Readers not wishing to sort out the meanings of the symbols and equations
can skip all equations and still understand most of the ideas. The article is
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written in a style to support this mode of reading; each equation is preceded
by a prose description of what is stated in the equation.

2. THE NEED FOR BEHAVIORAL REPRESENTATION

Historically, and practically, many user interfaces have been designed by
software engineers and programmers as part of the software of an interactive
system. The result has been interfaces of varying quality and usability. Much
work in the field of human-computer interaction has been directed toward
new approaches to user interface development in hopes of improving quality
and usability. From this work, it has become clear that there is an important
difference between design of the interaction part of an interface and design of
user interface software and that interaction design has special requirements
not shared by software design. Good interaction design must be user
centered. Being user centered means focusing on the behavior of a user
performing tasks with the computer. To emphasize this distinction, we use the
terms behavioral domain and constructional domain to refer, respectively, to the
working worlds of the people who design and develop the interaction part of
user interfaces and the people who design and develop the software to
implement those interfaces (Hartson et al., 1990).

Most representation techniques currently used for interface software
development (e.g., state transition diagrams, event-based mechanisms,
window managers, software toolkits, object-oriented programming) are con-
structional — and properly so. Any description that can be thought of as being
performed by the system is constructional. For example, a state transition
diagram represents the system view, looking out at the user and waiting for an
input. This diagram shows the current system state and how each input takes
the system to a new state. Constructional representation techniques support
the designer and implementer of the interface software but do not support
design of the interaction part of the interface itself. In contrast, it is in the
behavioral domain— from the user’s view — that developers of the interaction
part of an interface (e.g., interaction designers and evaluators) do their work.
A description performed by the user (e.g., performance of a task) is
behavioral. In the behavioral domain, one gets away from the software issues
and into the processes that precede software design, such as task analysis,
functional analysis, task allocation, and user modeling. Consequently, there
is a need for behavioral representation techniques (and supporting tools) to
give a user-centered focus to interface development and to serve interface
developer roles. As Richards, Boies, and Gould (1986, p. 216) stated about
tools for mocking up user interface prototypes, “Few of these provide an
interface specification language directly usable by behavioral specialists.”

With current emphasis on user-centered design (Norman & Draper, 1986),
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the interface development process is driven heavily by user requirements and
task analysis. Early evaluation of designs is based on user- and task-oriented
models (e.g., see Reisner, 1981). In fact, the entire interface development life
cycle is becoming centered around evaluation of users performing tasks
(Hartson & Hix, 1989; Nickerson & Pew, 1990). Thus, most interface
development activity that precedes constructional design and implementation
is done in the behavioral domain leading to the user task as the common
element among developer roles. Behavioral representation techniques are not
replacements for constructional techniques; they just support a different
domain. Interaction designs represented behaviorally must still be translated
into the constructional domain for interface software design and implemen-
tation. Interaction designs become requirements ior the design (and imple-
mentation) of user interface software. A formal representation of interaction
designs is, thercfore, needed to convey these requirements, and the UAN is
intended for that purpose.

3. RELATED WORK
3.1. Constructional Representation Techuiques

In comparing the UAN with earlier techniques, we begin with state
transition diagrams (STDs). Because STDs are a constructional representa-
tion technique, we are comparing apples and oranges, but STDs are a
common basis for interface representation, and, in the absence of good
oranges, designers have been known to try apples. Although STDs can be
used to supplement UAN task descriptions to represent certain aspects of task
transitions and interface state (Hartson et al., 1990), they cannot represent
interface feedback or appearance, and the power of standard STDs to
represent relationships among tasks is limited to single-stream sequential
control flow. STDs theoretically can represent the other temporal relation-
ships by representing explicitly all possible sequential control flow paths, but
the result is unusable —overwhelmingly large and complex, obscuring the
very sequencing structure that transition diagrams are good at showing. Two
independent, asynchronous tasks must be cast together as a single entity in a
synchronous model. To represent asynchronism and interleavability of two
tasks, in addition to the regular state transitions within a task, each state of
one is a next state of every state in the other and vice versa. For example,
consider this small generic example. Suppose task A has subtasks B and C that
are temporally interleavable (the user can move back and forth, suspending
each one while working on the other). In the UAN this is represented as:

Task A
Be C
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Figure 1. State transitions diagram for task A, a simple example of interleaving.

AN

where & means “is interleavable with,” a temporal relation explained in Section
9.7. For simplicity, let tasks B and C be composed of sequential steps, as
shown here in the UAN:

task A

Task B

The STD for this simplest possible example of interleaving, shown in
Figure 1, would contain complicated transition conditions that depend on the
real current state in each separate sequence. To include that real state
information in the STD of Figure 1, one would have to replicate every
possible subsequence of task B i wonjunction with every subsejuence of task
C, producing a combinatorial explosion of states and transitions. Just as one
example, if task B is really at subtask E and task C is at |, then transitions are
not legal from E to G or H nor from | to D. For real tasks, such as the use of
spreadsheets and text editors, the result is overwhelmingly large and complex.

It is equally important to note here that the original intention was to
represent the asynchronous relationship between tasks B and C. The se-
quencing of B is independent of the sequencing of C, but the diagram
obscures that relationship by interconnecting them.

It is clear that possible transitions between subtasks of B and subtasks of C
in the just-cited example must be represented implicitly, an approach taken,
for example, by Jacob (1986) and by Wellner (1989). Because direct
manipulation interfaces are composed of many individual simple dialogues
that interact like coroutines, Jacob divided an interface into interaction
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objects, each with a separate specification based on an STD. Coroutine calls
among STDs give the necessary asynchronism, suspending execution of the
calling STD and remembering its current state (part of the real state discussed
before). One interaction object is active at a time, and one state is current
within each object.

Wellner’s similar approach describes, as an example, copy-machine con-
trols with two buttons, one for toggling through choices of paper trays and one
for toggling through exposure settings. Both Jacob’s and Wellner’s approaches
separate all states relating to paper trays from those relating to exposure. In
each case, the asynchronism between the two sequences is implicit in the rules
for STD operation.

It is also useful to compare the kind of concurrency that can be represented
by state charts and by the UAN. The two operations in Wellner’s example,
selecting a paper tray and setting exposure, are represented in state charts as
being concurrently available to the user. This is really interleaving of those
operations and is what Lorin (1972) called “apparent concurrency” as
contrasted with “real concurrency.” In the UAN, interleaving is explicitly
distinguished from real concurrency, which involves the ability of the user to
do both operations simultaneously, something not addressed by state charts.
To the designer the difference may be just an implementational detail, but to
the user it is significant.

Most representation techniques used with user interface management
systems are constructional, including STDs, asynchronous STDs, and state
charts. There are also event handlers (Green, 1985; Hill, 1987), which
describe system actions (e.g., invocation of a computational procedure) in
response to events resulting from user actions. Event handlers introduce an
object-oriented flavor and, therefore, are even better suited for representing
asynchronism. They have more expressive power than STDs (Green, 1986)
but suffer in comparison, as do most object-oriented approaches, when there
is a need to visualize or trace sequences of user operations.

3.2. Behavio-al Representation Techniques

All representation techniques in the previous section are constructional.
The UAN is task oriented and behavioral, so it does not compete with STDs,
for example. Both kinds of techniques are necessary for interface develop-
ment, but behavioral methods are needed specifically for interaction design.

Grammatical representations using Backus Naur Form (e.g., Syngraph;
Olsen & Dempsey, 1983) tend to be behavioral because they describe
expressions that come from the user, but they are difficult to write and
understand. Also, like standard STDs, grammars typically do not represent
interface feedback, do not represent the appearance of the interface, and are
not suitable for asynchronism. Multiparty grammars (Shneiderman, 1982),
an interesting extension to production-rule-based techniques, do support
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direct association of interface feedback with user inputs. Multiparty gram-
mars, howevel, are not easily adapted to the variety of user actions in direct
manipulation interfaces.

(O 1e behavioral technique that has long been used both formally and
intu.avely involves scenarios (or storyboarding) of interface designs. This
technique is effective for revealing an early picture of interface appearance
and behavior. But, because a scenario is an example of the interface, it cannot
represent the complete description of the user’s behavior while interacting
with the computer. Peridot (Myers, 1987) is based on specification of
interfaces by demonstration — The user carries out the actions of the scenar-
ios. The use of inference and confirming dialogue solves the problem of
generalizing a design from specific instances of interaction. This approach is
novel, but Peridot produces program code directly with no intermediate
representation that can convey interface designs or behavior or that can be
analyzed.

Most other behavioral techniques are generally task oriented, including the
GOMS model (Card, Moran, & Newell, 1983); the Command Language
Grammar (CLG; Moran, 1981); the Keystroke-Level Model (Card & Moran,
1980); the Task Action Grammar (Payne & Green, 1986); and the work by
Reisner (1981), Kieras and Polson (1983), and Sharratt (1990). Design of
interactive systems, as with most kinds of design, involves an alternation of
analysis and synthesis activities (Hartson & Hix, 1989). Most of the models
just mentioned were originally oriented toward analysis; that is, they were
intended to represent an existing design in order to evaluate usability by
predicting user performance, rather than to capture a design as it is being
developed. On the other hand, synthesis includes activities that support the
processes of creating a new interface design and capturing its representation.
The UAN shares the task orientation of these other behavioral models but is
more synthesis oriented, because it was created specifically to communicate
interface designs to software engineers and implementers. In practice, most
techniques mentioned before can be used to support synthesis as well but
typically do not represent the direct association of feedback and state with
user actions. Also, many of these mcdels—the GOMS, CLG, and keystroke
in particular — are models of expert error-free task performance in contiguous
time (without interruption, interleaving of tasks, and without considering the
interrelationships of concurrent tasks), not suitable assumptions for the
synthesis-oriented aspects of interface design.

3.3. Temporal Aspects

The phenomena with which we are concerned in this article — user actions
during interaction with computer systems—are similar to computer-based
processes and to human cognitive behavior in that they all exhibit
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sequentiality through time. That is, we can measure the amount of time taken
for their execution, perhaps identify beginning and endpoints for their
duration, and describe temporal relations among them. It should not be
surprising, therefore, to find formalisms similar 10 our own for describing
and reasoning about the temporal aspects of such processes and behavior.

Temporal logics have been developed for a number of applications in
computer science, cognitive science, and artificial intelligence, among which
are:

® reasoning about concurrent systems, including program verification
(Barringer, 1985), operating systems, and very large scale integration
design (Mcszkowski, 1986);

® reasoning about database updates (Kowalski & Sergot, 1986);
® systems for temporal logic programming (Hale, 1987);

® building theories and automated systems to model human planning
behavior (Allen, 1983, 1984, McDermott, 1982); and

® natural language understanding systems (Kahn & Gorry, 1977).

Two basic approaches to handling time are employed in these applications.
One approach, employed largely for natural language understanding and
temporal logic programming, uses a tense logic with modal operators that
express the temporal dependencies of the truth values of propositions.
However, where the goal is to describe the temporal attributes of events and
processes, the truth value of propositions need not be treated as time
dependent. This second approach, which we adopt in this article, models time
as entities or attributes of entities that are then described using first-order
predicate calculus.

Of these applications, the work closest to ours is that of Allen, which is
concerned with describing and automating reasoning about human planning
and conversation. Using first-order logic, Allen identifies 13 basic temporal
relations among events and processes, such as “before,” “during,” and
“overlaps,” among which are the relations with which we are concerned. The
main difference between Allen’s theory and our own lies in his adoption of
intervals of time, rather than time points, as primitive, with a consequent
effect on the handling of the interruptibility of actions; this is discussed
further in Section 6.2. As Allen has noted, however, it is possible to recast his
theory with time points as primitives.

Constructional interface design maodels have not used temporal logic up to
now, but that is not to say that they have failed to capture temporal aspects
of interface behavior. Transition networks are capable of modeling sequential
temporal ordering but are not capable of representing the temporal relation-
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ships within asynchronous and concurrent interaction (Green, 1986). Produc-
tion systems, based on sets of event-response rules, have been proposed as a
means of capturing the more complex temporal relations among events in
modern interactive systems (Duce, 1985; Hill & Hermann, 1989). However,
the complex temporal relations that they are capable of capturing are hidden
in the implicit semantics of rule selection, and hence these relations are
neither explicitly expressed nor capable of being reasoned about.

Cardelli and Pike’s (1985) Squeak, based on cooperating sequential pro-
cesses, is a language for describing interfaces that exhibit concurrency. Thus,
an interface is described in terms of a set of processes, each of which accepts
events as input and generates events as output. Processes communicate with
one another by the transmission of an output event from one process serving
as the input to another. Unlike other ,constructional interface models, a
formal semantics for Squeak has been defined in which there is explicit
reference to the passage of time, which is used to expfess control flow among
processes in terms of null actions during. which time units elapse. However,
no attempt is made, as with Allen and others, to model the temporal aspects
of the system based on a theory of time and temporal relations.

The models of interaction described earlicr are all constructional, in the
sense that they represent interaction from the system’s viewpoint. Mecha-
nisms for handling control and communication from a programming point of
view are not likely to capture all the temporal relations that exist among
actions from a user’s point of view. For example, the difference between
interleaved processes and concurrent processes may be an implementational
detail for a constructional description of the interface and hence, as in
Squeak, does not appear in the abstractions of the language. As mentioned in
Section 3.1, however, interleaved and concurrent actions are significantly
different from a user’s point of view. A behavioral description of the
interaction must be able to express the difference and should be built on a
theory of temporal relations among user actions that explicates the difference.

It should be emphasized that we are concerned here with the temporal
aspects of user activity, not with the user’s perception of temporal relations
among these actions. Thus, recent work on the influence of the perception of
time and the efficacy of human reasoning about temporal relations among
processes (Decortis & De Keyser, 1988) is not relevant to our concerns.

3.4. Contributions of This Work

The need for synthesis-oriented behavioral techniques for interaction
design representation was motivated in Section 2. In addition, designers need
a precise framework in which to think about, discuss, and represent con-
straints on relative timing among asynchronous tasks. More motivation for




12 HARTSON AND GRAY

temporal relations is presented in Section 5. Sections 3.1 through 3.3 show
that nothing already exists to fill these needs.

The UAN, as described in this article, does meet the need for a synthesis-
oriented behavioral representation technique with temporal relations. The
UAN is the only representation technique that provides synthesis-oriented,
behavioral representation of tasks in interface designs, independent of
implementation concerns, and with the temporal relations necessary to
represent today’s asynchronous interface designs. Further, design represen-
tation is not about actions a user makes so much as it is about actions a user
can make. In an asynchronous environment, it is especially important to be
able to represent specific kinds of behavior that can occur without having to
detail all the cases that might result. The UAN temporal relations, through
the notion of modal logic, offer an explicit and precise representation of what
tasks can be interrupted, interleaved, and performed concurrently.

4. INTRODUCTION TO THE UAN

Use of the basic UAN, without emphasis on temporal aspects, is introduced
briefly here by way of example. Figure 2, adapted from (Hartson et al.,
1990), summarizes many of the UAN symbols, with only the temporal
relations needed for the examples in this section. These symbols for the basic
physical user actions are at the lowest level of abstraction and are suggested
symbols in the sense that the UAN is an open notation, often adapted and
extended by interface designers. Tasks composed of these actions are named,
and the names are used as references to the task descriptions in order to build
up levels of abstraction in a task structure as described in Section 9.1.

As an example, consider a hypothetical Calendar Management System
(CMS) that maintains appointments in a small database. The main interface
object is the display of a calendar with views for day, week, and month (as
shown in Figure 3) through which the user can navigate. The paradigm tor
adding, modifying, or deleting an appointment is simple and analogous to the
paper calendar: Find the correct day (via day, week, and/or month views) and
hour and type into the appointment spaces. There are also commands for
searching the calendar and for help information. The highest level UAN task
description for using CMS might be as shown in Figure 4. Each time CMS
is used, the user makes one choice from among its basic functions:
access_appointment, add_appointment, update_appointment, delete_ap-
pointment, or establish_alarm. This choice is represented in Figure 4 by the
disjunction symbol (}). The task of selecting and executing one basic function
can be performed any number of times, represented in Figure 4 by the *
symbol. Task analysis is the process that reveals the need for the basic tasks
in Figure 4, but details of the methods for performing those tasks may not be
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Figure 2.  State transitions diagram for task A, a simple example of interleaving.

Action Meaning

- Move the cursor

Xl The context of object X, the “handle” by which X is manipulated
“X] Move cursor into context of object X

-[x,y] Move the cursor to (arbitrary) point X,¥ outside any object

“[x,y in A]  Move the cursor to (arbitrary) a point within (relative to) object A
Move to object X within object Y (e.g., [OK_.icon in

X in Y] dialogue_box])

X]- Move cursor out of context of object X

v Depress

A Release

Xv Depress button, key, or switch called X

XA Release button, key, or switch X

XvA idiom for clicking button, key, or switch X

X“abc” Enter literal string, abc, via device X

X(xyz) Enter value for variable XyZ via device X

() Grouping mechanism

* Iterative closure, task is performed zero or more times
+ Task is performed one or more times

{} Enclosed task is optional (performed zero or one time)

Disjunction, choice of tasks (used to show alternative ways to per-
OR, | form a task)
: Separator between condition and action or feedback

Feedback Meaning

! Highlight object

-1 Dehighlight object

3] Same as !, but use an alternative highlight
1! Blink highlight

(B Blink highlight n times
@xy At point X,y
@xX At object X

@xy in X At point X,y in (relative to) object X
Display(X)  Display object X

Erase(X) Erase object X

X>~ Object X follows (is dragged by) cursor
X>>- Object X is rubber banded as its follows cursor
Outling(X)  Outline of object X

known at first. (The UAN supports development of the design in any
direction of abstraction—top down, bottom up, and inside out.) Later, the
subtasks of the access_appointment task might be described in the UAN as
shown in Figure 5.

To access an appointment, this task description specifies that the user does
any number of search, access_month, access_week, and access_day
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Figure 3. Typical user’s view of the CMS.

QI Search l Help [ _[Future | R;g?mment
T May 1991
[ April 1991
Past (|| March 1991
aStFwon TTues [WeD [ THUR | FRI ] SAT | s
1 2 3
4 5 6 7 8 9 10

MON 11|TUES 12| WED 13 |THUR 14 | FRI 15 SAT 16

1991

25 26 27 28 29

Figure . Manage_calendar task description.

Task: manage_calendar

(access_appointment
| add__appointment
| update_appointment
| delete_appointment
| establish_alarm)*

tasks followed by a single access_time_slot task (time slots being containers
of appointments). Figure 6 shows further details of the access_month task.
The access_week and access_day tasks are very similar.

The first subtask, select(any_month), allows the user to make the month
level the current view level and is instantiated by substituting a specific month
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Figure 5. Access_appointment task description.

Task: access_appointment

(search

| access_month
| access_week

| access_day)*
access_time_slot

Figure 6. Access_month task description.

Task: access_month

(select(any_month)
| move_forward_by_month
| move_backward_by_month)*

on the screen for “any month” and using a parameterized task description’
for select (see Figure 7). Because the select(object) task description is
composed of primitive user actions, it is more detailed and contains (among
other possibilities) columns for user actions, interface feedback, and interface
state.

The symbols are explained here in approximately the order of their
appearance. In the first column, the - means to move the cursor, and square
brackets, [ and ], around an object denote the context of that object. Thus, ~[{X]
means to move the cursor to the context of X. The context of an object is that
by which the object is manipulated, which is often the object itself, or it can
be, for example, a circumscribed rectangle or “grab handles” such as those
used to manipulate line objects in a drawing application. In Figure 7, the item
contained in square brackets denotes any arbitrary object icon, but the
modifying condition (—!} further specifies that the object icon must not be
already highlighted. Therefore, the first line in the task reads: Move the
cursor to an unhighlighted object icon and depress the mouse button (Mv).
The corresponding feedback, shown in the middle column, is highlighting of
the object icon (object_icon!). For this task, selection is defined (elsewhere) to
be from a mutually exclusive set of object icons. The feedback also indicates
that any other object icon already highlighted is now unhighlighted

! We have used an interaction style similar to that of the Macintosh in our examples.
Macintosh is a registered trademark of Macintosh Laboratories. The UAN is not limited to the
Macintosh, and it is not oriented toward any one specific graphical direct manipulation style.
However, we have taken advantage of the popularity of the Macintosh desktop concept to
illustrate use of the UAN.
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Figure 7. Select (object) parameterized task description.

Task: select(object)

User Action Interface Feedback Interface State
~[object_icon-!] Mv object_icon-!, selected = object
VY object_icon't:
object_icon’-!

Mv

(object_icon’!: object_icon-!).2 The resulting interface state (selected =
object), shown in the third column, defines the set of selected items to contain
exactly the one object whose representing icon is highlighted. This implies
that any previously selected objects are now unselected and makes explicit the
difference between selection of an object and highlighting of the icon that
represents the object. The select task is completed in the last line of the task
description by releasing the mouse button (MA).

Returning to the access_month task description in Figure 6, the first step
to select(any_month) makes the month level the current level in navigating
the calendar, and the user can then move forward or backward by month.
When the user desires to navigate at the week (or day) level, this is
accomplished by performing the access_week (or access_day) task that
starts with select(any_week), or select(any_day), causing the current level to
be the week (or day) level. The overall design for navigation requires access
to all levels, supported by a design decision to keep at least one instance
(default is current instance) of month, week, and day on the screen at all
times.

The task of accessing a time slot is shown in Figure 8. The
access_time_slot task in Figure 8 begins with a precondition, called a
condition of viability, that means the view level for navigation must be at the day
level or the user cannot perform this task. This precondition is met by
performing the access_day task, either by itself or as part of the access_
appointment task that precedes the access_time_slot subtask, as shown in
Figure 5.

The task of adding a new appointment is described in Figure 9. Task
transaction diagrams (Hartson et al., 1990), STDs among tasks as states, are
a useful representation technique to supplement the UAN. Navigation within
the CMS provides a good example where clarity is added by a task transition
diagram, as shown in Figure 10.

? For simplicity, we ignore the more complex reality of the CMS that requires consideration
of a containment relation. For example, a month can be selected without a week or day, but
selecting a week also selects the containing month and so on.
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Figure 8. Access_time_slot task description.

Task: access_time_slot

view_level = day:
((scroll_up | scroll_down)*
select(any_time_slot)

Figure 9. Add_appointment task description.

Task: add_appointment

access_appointment
edit_appointment

The task of establishing the alarm, to notify the user later when an
appointment is impending, is described in Figure 11. The condition of
viability in the first line ensures that there is a current appointment (or at least
a specific time) with which to associate the alarm. The second line establishes
the association of an alarm with the appointment. The third line is a matter
of using a dialogue box to set parameters such as alarm lead time (how long
in advance of an appointment to sound the alarm). This dialogue box is also
the means to express standing orders for alarms (such as every week at this
day and time).

The set_alarm task to associate an alarm with an appointment (invoked in
the second line of Figure 11) is accomplished by dragging a copy of the alarm
icon from the upper left-hand corner of the screen (see Figure 3) to the time
slot of the appointment. The set_alarm task is detailed in Figure 12.

The first line of Figure 12 contains a condition of viability for the whole
task. The first line of feedback (opposite MV) shows that the alarm icon is to
be highlighted, if it is not already so. The next line of feedback shows the
alarm icon to be an element of a mutually exclusive set of command icons,
causing any other already selected icon in the set to be unhighlighted (and
unselected) when the mouse button is depressed over the alarm icon. The user
action -[x,y]* describes movement of the cursor to various arbitrary points
over the screen, on the way to the appointment. Feedback for this action
shows that the icon itself stays in place at the top of the screen while the
outline of a copy of the icon gets dragged away. The feedback for the action
of releasing the mouse button (MA) indicates that the copy of the alarm icon is
affixed to the appointment display at a specific point (X', ¥') relative to the
appointment itself.

An interesting part of the temporal nature of a task is the phrasing or
chunking that occurs among user actions (Buxton, 1983). For example, the
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Figure 10. Task transition diagram depicting navigational possibilities among
some CMS tasks.

VIEW LEVEL NAVIGATION
(EXAMPLE OF NEED FOR S.T.D. AS PART OF REPRESENTATION)

START SELECT (ANY DAY)

N\

FWOD/BACK

mer L)
(ANY WEEK) (ANY DAY)

FWD/BACK FWO/BACK

‘ DAY .

3 SELECT
SELECT (ANY DAY
(ANY WEEK)
SELECT
(ANY DAY)
SELECT
(ANY WEEK)
SELECT
(ANV MONTH) T‘ME
SLOT
DESIGN DECISION:
KEEP AT LEAST ONE INSTANCE saEcT USE SELECT
EACH OF MONTH, WEEK, DAY (ANY MONTH) KEY- g{'},‘% TIME
ON SCREEN BOARD

task description of Figure 12 clearly and visually delineates the part of the task
performed while the mouse button is depressed as everything that occurs in
the task description between MV and MA,

As another example of phrasing, consider the task of multiple icon selection
with the Shift key, as shown in Figure 13. Here the interval over which the
Shift key is depressed is a “phrase” that spans the selection (and/or deselection)
of as many icons as desired and can easily be identified visually in the task
description.

5. THE NEED FOR TEMPORAL RELATIONS

Temporal relations were not emphasized in Section 4, which introduced the
basic UAN. We now begin to discuss the introduction of temporal relations,
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Figure 11. Establish_alarm task description.

Task: establish_alarm

view_level = time_slot:
set_alarm
set_alarm_parameters

Figure 12. Set_alarm task description.

Task: set_alarm

User Action Interface Feedback Interface State

view_level = time_slot:
(-[alarm_icon]

Mv alarm_icon-!: alarm_icon!, selected = alarm_
Vemd_icon'!: emd_icon’-! command
“Ix,y]" outline(copy(alarm_icon)) > -

~[appointment_icon] outline{copy(alarm__icon)) > -
appointment_icon!

MA) display(copy(alarm_icon))
@x,y in appointment icon

summarized in Figure 14 for reference in this section, into the UAN for use
in task descriptions. Formal definitions of the temporal relations are given in
Section 9.

The question of temporal aspects enters into the user interface design
process when the relative timing of tasks is considered. The easiest case for the
designer is often the most constraining for the user. For example, the designer
of a sequence requires completion of one task before another is begun. The
CMS task description in Figure 9 illustrates a sequence. The user must
complete the access_appointment task before beginning the edit_ap-
pointment task. The two tasks cannot be active at the same time. However,
users often wish to interrupt a task and, while they are thinking of it, perform
another task, later resuming the original one. A major purpose of asynchro-
nous direct manipulation interaction styles is to support this kind of inter-
leaved user task behavior. It follows that there is a need for a behavioral way
to represent the possibility of interleaving on the part of the user. This need
is met by the interleavability relation, which is used to connect these kinds of
tasks in UAN task descriptions.

Most design representations leave this question of intertask temporal
relationships implicit, if not ambiguous or undefined. Such specifications
often lead to arbitrary design on the part of the interface software designer or
implementer. For example, in designing for the task of adding a new
appointment to the calendar, a designer may look to the interface toolkit for
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Figure 13. Multiple_lcon_selection task description.

Task: multiple_icon_selection

User Action Interface Feedback Interface State
(Sv
-{tile_icon]
Mv file_icon-!: file_icon!, selected selected U file

]

file_icon!: file_icon —! selected selected ~ file

MA

-

s)*

Figure 14. Summary of UAN temporal relation symbols.

Temporal UAN

Relation Symbology Meaning

Sequence AB Tasks A and B are performed in
order left to right, or top to
bottom

Waiting A (t > n) B Task B is performed after a delay of
more than n units of time
following task A

Repeating disjunction Al B Choice of A or B is performed to
completion, followed by another
choice of A or B, and so on

Order independence A&B Tasks A and B are order indepen-
dent (order of performance is im-
material)

Interruptibility A->B Task A can interrupt task B

One-way interleavability A - B Task A is one-way interleavable with

B (A can interrupt B and execute,
but not vice versa)

Mutual interleavability AoB Task A and task B are (mutually)
interleavable

Concurrency A+ B Task A and task B can be performed
concurrently

an appropriate “widget.” It could be reasonable to the designer to use a
preemptive style dialogue box (Thimbleby, 1990), requiring the user to enter
information for the appointment before moving on to the next task. In
contrast, a user may seek information from an existing appointment while in
the midst of creating a new appointment. Or a user may wish to create two or
more related appointments at once, or to set the alarm while still creating an
appointment. Good interface design suggests that the designer will at least
allow the user to close the dialogue box without completing the associated data
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entry task and that any information entered so far will be retained. A good
design might also provide copy-and-paste operations for moving information
from one appointment to the other. But the user might still be left with the
responsibility of closing one task and opening the other and often must use
human working memory to carry certain information from one task context
to another. From the user view, there is a task interruption, but the design
does not support it well. Proper evaluation and design iteration will lead to a
better design, but temporal relations in the behavioral representation tech-
niques can help in two ways. First, temporal considerations might be in the
design but cannot be explicit in its representation without temporal relations.
The UAN temporal relations allow the designer to declare explicitly the
temporal relationships among the tasks. Second, treatment of temporal
aspects in this context is ad hoc, whereas temporal relations in the UAN help
the designer to think a priori about temporally related design issues.

In retrospect, many UAN temporal relationships may appear deceptively
obvious, but without them it is very difficult to discuss important asynchro-
nous aspects of interface designs with precision and to distinguish among
temporal alternatives within a design. In the next section, we begin to develop
the formalization of temporal relations in behavioral interface representa-
tions. As mentioned at the end of Section 1, those interested in just an
intuitive understanding of the temporal relations can skim or skip over
Sections 6, 7, and 8.

6. TIME

In what follows, we take as given that our universe of discourse contains
time, which is a one-dimensional quantity, made up of points, where each
point is associated with a value. The points are ordered along the dimension
by their values. The common concepts of later and earlier correspond to
larger and smaller values of time, respectively. The view of time taken here
is compatible with the traditional psychological, thermodynamic, and cosmic
views of time (Hawking, 1988).

Nothing we say in this article depends on whether this quantity is discrete
or continuous. User behavior certainly occurs in continuous time. At the
lowest level, most corresponding computer events occur in discrete time—
Continuous user inputs are sampled in the hardware, and outputs are subject
to timing constraints (e.g., a system clock). Resolution of time, however, is
usually sufficiently fine so that the difference in views from user to computer
is insignificant.

An example of a case in which sampling resolution does make a difference
is seen in a Macintosh interface when using multiple display monitors, for
example, with one on top of the other. Depressing the mouse button within
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the menu bar causes the corresponding menu display. With a single monitor,
a user cannot move the cursor above the menu bar. However, the second
monitor can provide screen space above the normal application display. In
this configuration, moving up to the bar, and beyond into the second screen
above, causes the menu to disappear. It is possible, though, to move up
through the bar fast enough so that the cursor position is not sampled within
the bar. In this case, the menu remains displayed, even though the cursor
could not have gotten above the bar without passing through it. Fortunately,
examples such as this are more oddities of timing than real interface
problems.

The rest of Section 6 is devoted to the fundamental notions that events
happen in time and that intervals of time occur and can be compared to
determine if one precedes another or if two or more intervals overlap in time.

6.1. Events in Time

Things that happen in the world (i.e., events) can be thought of as
happening iz time; that is, each event can be associated with a set of points in
time so that it is possible to answer questions such as: “Given a point in time,
t, and an event, ¢, is ¢ Happening at ¢?” Formally, where ¢ is a point in time
and ¢ is an event, consider a binary relation H such that:

¢ H t © event ¢ is Happening at time ¢ 1)
Note that the right-hand side of this definition involves an appeal to the
physical world, and thus it is a postulate of the model that the right-hand side

can be evaluated. (The reader is referred to the Appendix for an explanation
of mathematical notation used in the equations and elsewhere in this article.)

6.2. Time Intervals

An interval of time is an ordered set defined by an ordered pair of two
points in time. Thus, an interval of time, 7, denoted by {t,, ¢,] is defined:

T={l@zt)A¢s) (2)

We define two projection functions on intervals, B and E, to extract their
Beginning and Ending points. Where T is the interval [t;, ¢,]:

BT) = ¢ 3
KT) = ¢ ®
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Our adoption of time points as primitives, and the definition of intervals in
terms of them, is in contrast to Allen’s theory (see Section 3.3). Allen argues
that the use of points of time as a primitive leads to certain semantic
difficulties, particularly in handling change over time. Thus, if an action, say
selecting a menu item, is defined in terms of its temporal endpoints, and time
is continuous, then there must exist a time at which the user is neither
selecting nor not selecting the menu item. As we argued in the previous
section, however, we are not committed to treating time as continuous for the
purposes of modeling user actions. Furthermore, as a consequence of taking
intervals as primitives, Allen is forced to introduce separate concepts of event
(indivisible through its defining interval) and process (interruptible during its
defining interval). Our approach avoids this problem, resulting in an
ontology containing only one type of entity for actions and an account of
interruptibility with greater explanatory power (see Section 9.5).

6.3. Preceding and Overlapping

Two important relations between intervals are Precedes and Overlaps,
denoted respectively by P and O. Where T, and T, are intervals:

TP T, 0 Vij((t € T)A( € Ty) D (¢ < 1) (5)
T,O0T,® 3t €E T)A(t € Ty) (6)

The following section formalizes the concepts of task and user action, as
used in the UAN. Then Section 8 relates user actions to time, setting the stage
for the development of UAN temporal relations in Section 9.

7. TASKS AND ACTIONS

The primary abstraction of the UAN is the task. A human-computer
interface is represented as a quasi-hierarchical structure of asynchronous
tasks, the sequencing within each task being independent of that in the others.
Each task is, in turn, represented in a notation describing user actions and
interface feedback, offering a structured way to describe the cooperative
performance of a task between a human user and a computer system.

The UAN was originally created to provide a pragmatic and effective
means for conveying interface design idcas from designers to implementers
and evaluators. It is a goal of this article to be more precise about the concepts
of task and user action, which were not formally defined in the original UAN.
Additionally, we wish to make the connection between user actions and time.
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7.1. Basic Definitions

The basic concepts of UAN are those of task, action set, and user action.
With the inclusion of temporal relations, a UAN task is an ordered triple:

task = < action set, temporal relation set, application function > (7)

The elements of the temporal relation set, when applied by the application
function, specify the temporal relationships among actions in the action set.
A user action is either a primitive user action or a task:

user action = primitive | task 8)

The action set of a task, «, is the union of all user actions mentioned in the
description of a and is obtained by applying the projection function, A(«), to
the triple of Equation 7.

The definition of task in Equation 7 is recursive in that the elements of the
action set r.ay themselves be tasks via Equation 8. The primitives of the
UAN, into which all tasks may be decomposed, are simply those actions
which, by definition, are not further decomposed; these include basic physical
operations by the user on input devices (e.g., cursor movement, mouse button
press and release, keypresses). Task descriptions can also include memory,
cognitive, perceptual, and decision-making user actions (Sharratt, 1990), but
they are not discussed here. The boolean function, prim(a), is used to
determine if an action, «, is primitive:

prim(a) = true, if a is a primitive user action;
false, otherwise 9

In the following sections, the contents of the latter two elements of the task
(viz., the temporal relation set and the application function) are discussed in
relation *o user actions. It should be noted that task descriptions using the
UAN include annotations referring to feedback, display state, and commu-
nication with the application. Although these are essential in determining the
adequacy of a design specified by means of the UAN, these annotations are
not germane to the issues discussed in this article.

7.2. Instances of Tasks

The UAN uses the names of actions (primarily tasks in this context) as
intensional design-time references to extensional run-time instances or invoca-
tions of those tasks. The intensional descriptions specify constraints on
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temporal possibilities for extensional instantiations of the tasks within a specific
performance of the containing task. We use the term instance as needed for
clarity. However, the terms task and action and related terms are often
sufficient to refer to their instances, unless it is important to make the
distinction.

8. TIME AND ACTIONS
8.1. Actions as Happenings in Time
Instances of user actions are events in time, and thus we wish to apply the
relation H to them, where « is an instance of a user action and { is a point in
time:
o H ¢ © action o is Happening at time ¢ (10)

Again, it is postulated that the right-hand side can be evaluated for any user
action, a. Equation 10 is fundamental in that it relates user actions to time.

8.2. Lifetimes

An instance of a user action, «, has a Lifetime, denoted L(c), which is the
interval spanning just those times that satisfy H:

L(a) = [B(L(a)), E(L(a))] (11)

where the Beginning of the Lifetime, B(L()), is the least point in time such
that the action instance is happening at that time:

B(L(@) =D (@ HH)A = (¢ < ) A (« H 1)) (12)

and the End of the Lifetime, E(L(«)), is the greatest point in time such that
the action instance is happening at that time:

ElL(a)) =t ((a H) A = J¢((f > ) A (e H 1)) (13)

8.3. The Boustrophedon Argument
Given these definitions, a user action (primarily a task in this context) need
not be happening at all times during its lifetime; there may be times of

inactivity as well as times of activity. The graph of activity versus time, which
we call an actiily waveform diagram, is a boustrophedon (alternating rectangu-
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Figure 15. The boustrophedon activity waveform and its envelope, the lifetime
of the task instance.

activity

lininsl

+ time

envelope

& time

lar) waveform. By the previous definition, however, the lifetime of an
instance of a task is the “envelope” of the corresponding boustrophedon
waveform, as shown in Figure 15.

8.4. Interruption

One way that a task can become inactive is due to interruption by another
task. An interruption occurs when the user and system activities of one task
are suspended before the end of the task’s lifetime and the activity of another
task is begun in its place. Task interruption usually occurs due to actions
initiated by the user, but they can also be the result of system-initiated actions
(e.g., to update a clock or announce the arrival of electronic mail).

8.5. Idle Time

Another way that a task can be inactive is due to idle time, when neither
user nor system is doing anything significant to this task. All tasks are
decomposable into primitive physical user and system actions. There are
natural lulls between physical actions—times between keystrokes and pauses
to see, to think, or to get a cup of coffee. These lulls correspond to inactive
periods in the activity waveform diagram but, by the boustrophedon argu-
ment, are part of the lifetime of the task.

8.6. Periods of Activity

Formally, a period of activity, , of a task, a, is an interval such that « is
happening at all times in the interval:
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ma) = [t;, ] D Vi((ty < 4, < ) D (aHy)) (14)

The lifetime of a task, then, contains one or more periods of activity. As just
noted, a period of activity of an instance nt a task continues until it is
terminated by interruption from another task or by inactivity within itself.

9. TEMPORAL RELATIONS AMONG USER ACTIONS

In this section, several temporal relationships among user actions are
identified and formally represented. In its simplest form, each relationship is
represented as a binary relation between two user actions: a,Ra,. In this
context, it is not very useful to regard these relations as mapping operators,
to think of giving an «, in the domain of R and yielding an a, in the range.
As mappings, the relations described here are usually not total and not
functional and are often many-to-many. Rather, it is better to think of these
relations as algebraic combining operators. If user actions o; and a, are
related by R, a;Ra,, it means that they bear a certain temporal relationship
within a task, and one can perform a kind of abstraction by combining them;
that is, apply R to «; and a, and, by closure (see Section 9.1), get a new user
task, a; = R(ay, ay).

The most basic temporal relationships we have identified are:

® sequence

® waiting

¢ repeated disjunction

® order independence

¢ interruptibility

¢ one-way interleavability
¢ mutual interleavability

¢ concurrency

The set of temporal relations in a task definition defines a set of constraints
(or, perhaps, the relief of constraints) among the elements of the action set.
For example, if two tasks are related by a sequence, the temporal possibilities
for their performance are completely constrained. On the other hand, if the
same tasks are related by mutual interleavability, they are less constrained
temporally, allowing the user more freedom with respect to their relative
timing. Of course, that freedom is not necessarily exercised by the user at
run-time; given that a set of actions can e interleaved by the user, it does not
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Figure 16. Activity waveform diagram of sequenced tasks.

activity
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follow that they are interleaved. From the point of view of describing
human-computer interaction for design purposes, the interesting relation-
ships are those that express the possibilities for actions.

As mentioned at the end of Section 1, readers not wishing to get into the
details of symbols and equations can skip the numbered equations in Section
9 and still understand most of the concepts. Each equation is preceded by a
prose description.

9.1. Sequence

Perhaps the simplest temporal relationship between two tasks is that which
is expressed by the binary relation sequence; one task is performed immediately
and entirely after the other. More formally, two user actions, «; and a,, are
in sequence (related by the sequence relation, S) if and only if the entire
lifetime of a, immediately precedes the lifetime of a,:

o, S a; © ((L{e,) P L)) A = Iw(e)((Ler;) P () A (i) P
Liay)), fory # 1,j # 2 (15)

Note that this sense of sequence, which does not allow an intervening action
between two actions in sequence, can be thought of as a strong precedence
relation. This observation will be of importance when examining the concepts
of interleaving and interruption. Figure 16 is an activity waveform diagram
illustrating a sequence. The actions shown here could all be different or could
involve different instances of the same task. Notice that each action instance
is performed to completion before another is begun; no interruption is
occurring.

In the UAN, a sequence is represented in the following way. The S is
dropped, and the temporal sequence of actions, a, and a,, is represented
iconographically by writing the actions as a spatial sequence horizontally:

a| a2
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or vertically:

a,
a,

As an example from the CMS, a high-level task may be defined as the
sequence of two other tasks (as in Figure 9):

Task: add_appointment
access_appointment
edit_appointment

The task of adding an appointment is defined to be the sequence of
accessing the appropriate appointment followed by the editing (including
typing, corrections, etc. in predefined fields in the time slot) of the appoint-
ment.

So far, a sequence is a binary temporal relation; that is, it applies to exactly
two tasks as operands. There are two ways that sequences, and the other
temporal relations, can be applied on a larger scope. One way is to build up
levels of abstraction; the second way is by grouping with parentheses. In the
next two subsections, it is convenient to define these two methods of
expansion in terms of sequences, but the concepts apply to each of the
temporal relations equally well.

Task Names and Levels of Abstraction

A task description written in the UAN is a set of actions interspersed with
temporal operators according to the rules for their application, following
Definitions 7 and 8. This task can then be named, and the name is used as a
reference to the task. This name reference is used as an action in another
(higher level or containing) task. As an example, consider a simple task that
has only a sequence, a; a,. This task can be named “B8,” and then § can be
used in task < in sequence with some other task €. The use of a task name as
a user action corresponds at run-time to the invocation of a user-performed
procedure. The use of a task name as a reference to the task is an invocation
and serves two purposes (just as invocations do in programming systems):
abstraction (hiding the details of the procedure) and instantiation (creating a
task instance —see Section 7.2—and giving it a lifetime).

The recursive nature of this abstraction operation makes it possible to build
layers of abstraction, allowing the entire interface design to be organized into
a quasi-hierarchical user task structure. Just as in the case of program code,
the levels of abstraction are necessary for controlling complexity to promote
understanding by readers and writers of the UAN. Also, just as in the case of
software procedures and their calling structure, there will be a path of active
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tasks down to the level of primitives. To illustrate with the example just given,
consider the performance of task y. At some time 8 will be invoked from
within . During the performance of 8, task «; will also be performed. At that
moment, all of the tasks @, 8, and v will be active. This kind of simultaneity
is only an artifact of the hierarchical decomposition structure of tasks; a
“calling” task and a “called” task will always have overlapping lifetimes. This
is not the same, however, as two independent tasks being interleaved or
concurrent. All the temporal relations described in this article are applied to
independent tasks at the same level of abstraction —not between calling and
called tasks in the task hierarchy.

Grouping, Closure, and Composition of Relations

An instance of a temporal relation between two tasks can be enclosed within
parentheses. The effect is similar to the grouping into a named task as
described in the previous section, except the resulting task is not named. For
example, the sequence of actions:

a, a,
can be grouped with parentheses into the following task:
(a; ay).
Each of the temporal relations, R, maps a pair of actions into a task:
R: {actions} X {actions} = {tasks} (16)

and a task is also an action; thus the temporal relations are closed over the set
of all actions. Therefore, by composition, one can apply another relation
between a group in parentheses and some third action, a5, yielding a new
task, as in the case of this sequence:

(a; ay) as.

Composition of relations allows large task description to be built up of user
actions (especially tasks) and temporal relations.

Applying the concept of grouping to the sequence relation, one can derive
the property of associativity directly from the definition of the sequence
relation in Equation 15:

(a; o) a3 = a, (ay a3) (17)
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The binary sequence relation can be generalized to the ternary case by
extending Equation 17 in this way:

(o ag) a3 = o (@ @3) = () @ @3) = @ @ 3 (18)
Similarly, the sequence relation can be extended to the n-ary case:

a,a, a3 . .. Q, 19)
9.2. Waiting

Sometimes an interface designer wishes to constrain the time interval
between tasks in a sequence. For example, to define a close relationship that
combines two tasks into one, the interval could be required to be less than
some time value. To illustrate, two mouse-button clicks, when performed
within a short interval, are to be recognized as a distinct user action called a
double click. In such cases where waiting is significant in a task description, the
waiting interval acts as a temporal relation between the actions, constraining
the temporal distance between actions in a sequence. Within a UAN task
description, a waiting relation between tasks a; and a, is written as:

a, (¢ comparison-operator n) a, (20)

where ¢ is the time to wait, comparison-operator makes an arithmetic
comparison (such as less than or greater than), and 2 is a numeric value in
units of time.

The example of the double click of a mouse button is represented in this
specific UAN expression:

MVA (t < n) Mva

where MVA denotes the mouse button being depressed and released (clicked)
and (t < n) declares that the wait between mouse clicks must be less than n units
of time. If the user waits longer than n time units, this action will be seen as
two single mouse clicks. The value of n can be controlled by the user via an
interface setting.

Another way waiting can be used in a UAN description as a temporal
relation between two tasks is to indicate a minimum wait to cause some kind
of time-out by the system:




32 HARTSON AND GRAY
ay (’ > n) Qo
9.3. Repeating Disjunction

The vertical bar (|) is used to indicate a disjunction of choices among user
tasks. For example, «, | «, | a5 denotes a three-way choice among «,, a,, and
a3. A common high-level construct in the UAN is seen in this example of a
repeating disjunction:

() | o | a)®

This notation means that tasks a;, a,, and a; are initially equally available.
The * means that the disjunction (the whole task within parentheses) is
repeated any number of times. Once a task from the disjunction is begun, it
is performed to completion, at which time the three tasks are equally available
again. The cycle continues arbitrarily each time any one of the three tasks is
selected by the user and performed to completion.

As an example from the CMS, the highest level task is defined in Figure 4
as the repeating disjunction of the five main user operations:

Task: manage_calendar
{access_appointment

| add_appointment

| update_appointment
| delete_appointment

| establish_atarm)*

Repeating disjunction is also used in the access_appointment task
definition of Figure 5:

Task: access_appointment
(search

| access_month

| access_week

| access_day)*
access_time_siot

Observable user behavior in performing the access_appointment task is a
series of instances from among the five tasks of search, access_month,
access_week, and so on. Ways in which the user might decide which choices
to make can be described within the access_appointment task using
cognitive, perceptual, and decision-making activities, but these are not in the
scope of the present article.
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9.4. Order Independence

In the use of interactive computer systems, as in the world outside
interfaces, it is not uncommon to find situations in which several tasks are to
be performed but the order of their performance is immaterial. In the UAN,
two user actions, «, and «y, are order independent if and only if both actions are
required, but the lifetime of either may precede that of the other:

a, & a, © ((a ay) | (a; ay)) (21)

The order independence relation is not associative, but it nonetheless can be
extended to the n-ary case:

a8 8. ..8a, (22)

where this expression denotes a disjunction of all the possible sequential
orderings of the actions. In practical terms, this means that all of the tasks—
oy, Oy, ..., a,—must be performed but that any order among them is
acceptable.

An example of order independence at a very low user action level is seen in
the task of entering a “command-X” on a Macintosh keyboard—a combina-
tion of the “®” and “X” keys. The UAN uses “V” to denote the depressing of
an input device such as a key or mouse button. The symbol v is used to
indicate the release of such a device. The symbol on the key is the name of the
device that is the key. Because the & key must be depressed before the X key,
but the order of their release does not matter, the task is defined in the UAN
as:

Task: command_X
gVvXV (€A & XA

The edit_appointment task provides an example of order independence
from the CMS. Suppose an appointment object has text fields for name of
person, description of appointment, and location. The task of editing an
appointment breaks down into the set of tasks for editing these smaller
objects, and the order in which they are edited does not matter:

Task: edit_appointment
view_levei = time_slot:
(edit_person

& edit_description

& edit_location)
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Figure 17. The simplest case of interruption.
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The edit_person, edit_description, and edit_location tasks wul feature
repeating disjunctions of editing subtasks such as type_string, select_string,
cut_string, copy_string, paste_string, and the like.

9.5. Interruptibility

We begin by refining the concept of interruption, introduced earlier in
Section 8.4. An instance of an action, a, is interrupted by another action, o,
if and only if a period of activity of &, overlaps the lifetime of a, but does not
overlap a period of activity of a,:

a, is interrupted by a,; ©
3 m(a ) (7)) O Lay)) A ~ Txj(ar)(mi(a;) O m(ex))) (23)

The simplest case of interruption is shown in Figure 17. Task a, is begun
and task a, interrupts, dividing a, into two periods of activity, %,(a;) and
x,(a;). The lifetime of a,, L(a,), spans the two periods of activity.

Because a design representation is intensional, there is no symbol in the
UAN for “is interrupted by.” Rather, there is a temporal operator to denote
cases of interruptibility, cases where interruption can occur. Thus, the
definition of interruptibility requires the use of alethic (truth-related) modal-
ities in our expressions. That is, the defining proposition must assert the
possibility of a certain state of affairs. For this purpose, we add to the
first-order predicate calculus used so far the primitive monadic modal
operator, M (Hughes & Cresswell, 1968), with the following definition:
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Mp = it is possible that p (i.e., it is not a tautology that = p) (24)

Note that M expresses an alethic rather than a temporal (time-related)
modality; although we are speaking of temporal relations, we do not use
temporal modes.

An instance of an action, «,, is defined to be interruptible by another action,
a, (o, can interrupt ay), if and only if a period of activity of &, can overlap
the lifetime of o, but cannot overlap a period of activity of a,:

a, = ay © M(3x(e M(xi(a) O Liay)) A = Ix(az)(m(a;) O
7(22)))) (25)

The interruptibility relation is not symmetric; a;, ~> a, implies neither a, =
a, nor = (ay = ay).

Uninterruptible Tasks and Preemptive States

Consider a task o for which the action set is A(a). If task o' can interrupt
task «, a' = «, there are two ways that the definition in Equation 25 can be
satisfied: o can interrupt between the lifetimes of instances of the a; € A(a),
or interruption can occur during the lifetime of an o;; that is, o 2 «;. The
general interpretation of the interruptibility relation includes both these cases.

It is also necessary to be able to define exceptions to this second case,
namely, to be able to specify those a; for which = (@' = «;). One kind of
exception occurs when q; is primitive, denoted by the unary relation (prim(a).
Primitive user actions are not interruptible.

A second situation in which a task instance must be specified as
uninterruptible occurs in preemptive interface features (Thimbleby, 1990). A
dialogue box is a good example. While using a dialogue box in task a,, a user
generally cannot click in the window of task o, to change tasks until the
dialogue box is exited. Preemptive states correspond to sets of user actions,
the boundaries of which cannot be crossed by the interleaving relation. In
other words, while in the dialogue box, the user can still interleave tasks but
only among tasks within the dialogue box. In the UAN, pointed brackets,
<,>, represent the unary relation “is uninterruptible,” enclosing those parts
of a task description that are uninterruptible by other user actions at any level.
For example, < a; a, a;> denotes that the sequence of these user action
instances cannot be interrupted.

Preemptive states in this view are a means of partitioning the user’s task
domain. A preemptive state is a task subdomain with circumscribed
asynchronism. A preemptive state limits the user to a set of tasks usually
disjoint from those available outside that state. Consider the graph or set of
graphs that is the nondeterministic state transition diagram of the dialogue
control for an interface. The part of the dialogue without preemptive states
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can be considered the main dialogue. The main dialogue and the set of
preemptive states would each be simply-connected components of the graph,
the preemptive states being isolated from the rest of the interface except for
the single transitions entering and leaving the preemptive state set. Mades are
usually preemptive; consider the input mode in the Unix “vi” editor. There are
many commands that lead to the input mode (open line, append, input, etc.)
at which point almost all keystrokes are considered as input text. The Escape
key allows the user to leave the input mode, and many vi keyboard commands
once again become active. Inputs that apply in the input mode are more or
less disjoint from the commands that apply to vi outside the input mode.

Modes and preemptive states in interface designs are the result of decisions
(conscious or not) about the task domain. It is not our intention to argue for
or against such decisions here, only to be able to represent the designs.

Scope of Interruptibility

To understand the effect of interruptibility on a task or action, «, it is
useful to determine which subtasks (tasks or actions invoked by a) themselves
are interruptible. We must begin by formalizing the concept of invocation,
introduced in Sections 7.2 and 9.1. User action «' can directly invoke user
action « (« is directly invocable by ') if and only if a is a member of the
action set of a':

ad>> a0 a€ Al) (26)
Action o' can invoke action a (« is invocable by «') if and only if there is

a progression of possible direct invocations, «,, a,, . . ., &, connecting o'
and a:

o >> a0 (e, ...,0)D

o >> a

.oy >>a,, fori=1,2,...,k-1

ii. o >> a 27)
It follows that @ >> a D o >> a, where a,, a,, . . ., a is a null
progression.

In like manner, we define the “can interruptibly invoke” relation (+). Action
o can interruptibly invoke action a (« is interruptibly invocable by ') if and
only if o can invoke a and « is neither uninterruptible nor a primitive.

odea©((ad >>a) A= (<a> or prim(a))) (28)

If o 2 a, the full set of user actions collectively known as the scope of
interruptibility is o plus all the user actions invocable by a, except primitives
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and uninterruptible actions; that is, the scope of interruptibility is a and all
user actions interruptibly invocable by a:

o', a) = (o} U fa” | aea”) 29)
9.6. One-Way Interleavability

There may be times when the interface designer wishes to specify a; 2 a,
A ~(a; = a,). For example, consider the case of help as a facility available
during some other complex task such as the editing of a document. If the
high-level task is described as follows:

help = edit document A = (edit document = help)

the user can invoke the help task at any time during the editing, but closure
of the help task is required before editing can continue. In other words, help
tasks can interrupt the editing, but editing cannot interrupt the help. We call
this one-way interleavability.

An instance of an action, «,, is defined to be one-way interleavable with
action a, if and only if o, can interrupt a, but a; cannot interrupt a:

a; > ay © (o 2 ax) A = (o 2 ay)) (30)
9.7. Mutual Interleavability

Two user actions, a, and «a,, are mutually interleavable if and only if they can
interrupt each other; that is, it is possible that a period of activity of either
action can interrupt a period of activity of the other:

a; @ ay O ((a; 2 ag) A (a; 2 ay)) (31)

Unqualified use of the terms interleaving and interleavability is reserved for the
more general two-way (mutual) case. As previously discussed, a; & o, means
that a; and a, are mutually interleavable throughout the scopes of
interruptibility of a; and «,.

One can derive the following property of associativity directly from the
definition of the interleavability relation in Equation 31:

(2 Pay) Pa; = a; S(a; Fas) (32)

The binary interleavability relation, again, can be generalized to the ternary
case by extending Equation 32 in this way:
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Figure 18. Activity waveform diagram of interleaved tasks.
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(a; Pa,) Pa; = a; S(a, Cas) = (a; Pa, Qaz) =
ay @ag @ag (33)

and to the n-ary case:
o, Pa, &. .. Sa, (34)

Interleavability 1s one of the cases in which it is necessary to distinguish
between tasks and instances of tasks (Section 7.2). At run-time it is the
instances, of course, that are interleaved. Consider the case of help as a
facility available during some other complex task (e.g., editing a document).
Suppose that the help information, when invoked, appears in a separate
window from the document being edited. The editing and help tasks are
interleavable in that the user may alternate attention, and actions, from one
window to the other. There is only one instance of each user task: one editing
task and one help task. Additionally, it is possible that the user might
terminate one help task during the editing task and subsequently start another
interleaved help task while still within the initial editing session. This is a case
of two instances of the same task type (e.g., nelp) being interleaved with a
single instance of a distinct task (e.g., editing). Thus, &« & does not mean
that interleavability is reflexive; rather, this expression refers to the
interleavability among different instances of a.

There are many possible configurations of interleaving. Figure 18 shows
several interleaved tasks. Task a, is interleaved with a, and with aj, but a,
is not interleaved with a;. Task a, is not interrupted by a, after the period of
activity ¥g, because this period is the termination of a,. In general «;, a5, and
a; are different tasks, but again it is possible for interleaving to involve
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different instances of the same task. For example, two help windows could be
open simultaneously, with the user shifting attention from editing to each of
the help windows alternately.

An example from the CMS can be used to illustrate interleaving. The five
main user operations shown in Figure 4 are subtasks of the main task,
manage_calendar. In Sections 4 and 9.3, these were represented as a
repeating choice. A more asynchronous design would allow an instance of
each subtask to be created in its own window. The user could go back and
forth, interleaving activity among the subtasks by activating one window after
another (e.g., by clicking in each window). The task description for this
interleaved design is:

Task: manage_calendar
(access_appointment

¢ add_appointment

¢ update_appointment
& delete_appointment
& establish_alarm)*

9.8. Concurrency

Two user actions, a, and «,, can be concurrent if and only if it is possible
that a period of activity of one can overlap a period of activity of the other:

a; | ay OM(In(ay) a"j(az) (7)) O 7(2))) (35)

where M is the modal operator defined in Equation 24. In Figure 19, tasks a,
and a, are concurrent. A period of activity in «, is overlapped by periods of
activity of ay.
One can derive the following property of associativity directly from the

definition of the concurrency relation in Equation 35:

(g Veag) bas = ay N (ap ¥ axg) (36)
This can be generalized to the ternary case:

(s V) Voag = oy V(g as) = (@, Vag N ag) = ay Ny Vo (37)
and to the n-ary case:

oy loa, .. 1o (38)
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Figure 19.  Activity waveform diagram of concurrent tasks.
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Concurrency is a temporal relation that has not been greatly exploited in user
interfaces. This may be because users are not skilled enough to carry out tasks
concurreritly. Norman (1988) noted that much conscious activity is both
relatively slow and sequential in nature. We are able to switch attention from
one task to another, or even transfer information to and from tasks. But this
is interleaving, not concurrency, of action. Nevertheless, there are cases in
which it is possible and, indeed, preferable, to carry out more than one task
at the same time. A user can be perceptually responsive to information on the
display while typing or manipulating the mouse. Buxton (1983) described
input techniques that rely on the use of both hands concurrently. Such
situations require the full power of the concurrency relation as described
before.

Another kind of concurrency is seen in the actions of two or more users
doing computer-supported cooperative work. These users, using different
workstations, may be able to perform actions simultaneously on shared
instances of application objects, possibly operating through different views.
For a representation of the CMS in the case where periods of activity among
the tasks can overlap, the task description becomes:

Task: manage_calendar
(access_appointment

I add_appointment

¥ update_appointment
I delete_appointment

| establish_alarm)*
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10. DISCUSSION
10.1. How the UAN Helps With Interface Development

User interface design has two separate parts: design of the user interaction
and design of the corresponding user interface software. The interaction
designer receives, as inputs, requirements for the design from the systems
analysis process, which in turn includes inputs from marketing, task analysis,
user analysis, needs analysis, and so forth. The interaction designer—who
works in the behavioral domain of tasks, user actions, and perceived
feedback — produces as output a behavioral design of the user interaction part
of the interface. This interaction design now becomes the requirements for
the user interface software designers and implementers. A precise and formal
technique is needed to convey these requirements independently of the
software by which the interaction is implemented. In conjunction with screen
pictures showing interface objects and state diagrams showing user modes
and interface states, the UAN is such a technique. Because no behavioral
representation technique appropriate for documenting interaction design
previously existed, current practice has been to use software objects (e.g.,
widgets from software toolkits) directly for interaction design representation.

At this point in the interface development process, the design is often set in
a prototype, the beginning of a commitment to a software embodiment.
Although the prototype is used for some kinds of formative evaluation (e.g.,
user testing), a behavioral representation of the design offers advantages for
other kinds of evaluation. One is analytical evaluation, analysis (probably
automated) of the design in search of inconsistency, ambiguity, and other
undesirable characteristics. This kind of analysis is possible with the UAN,
but so far it is still in the category of future work. Another important kind of
evaluation at this point in the development process is a design walk-through,
which typically involves designers, evaluators, and possibly implementers.
Our experience has been that the UAN design representation is typically more
accurate, more complete, and more precise than the prototype as a source for
answers to the questions that arise in a design walk-through (e.g., about how
a particular interface feature or task actually works). Also, because a
prototype yields information about the design by showing examples of its
operation, it is extensional or instance oriented. In contrast, a UAN
representation is intensional and, therefore, explicitly states all possibilities.
For example, consider a simple task that is the disjunction of tasks A and B
(task: A | B). The UAN notation makes it immediately evident that there are
precisely two alternatives from which to choose. Using the prototype, one
might try task A and see that it works, but then possibly not realize task B had
also been possible at that time (especially if the operation of task A in the
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prototype makes task B subsequently unavailable). In addition, the prototype
does not generally convey whether there is some other task C also available.

Although this intensional capability of the UAN is important for analytic
evaluation and design walk-throughs, it is essential for conveying the
behavioral design of the interaction to user interface software designers and
implementers. Here, an extensional prototype simply does not suffice; solid
and precise intensional specifications are a necessity.

10.2. Conclusions

As one moves from one temporal relation to another, from sequence to
order independent, interleavable, and concurrent, it is in a direction of
decreasing temporal constraints. The temporal nature of a sequence is quite
constrained. The first action must be performed completely, then the next,
and so on, until all the actions are completed. In many sequential interface
designs, this constraint is arbitrary and even opposed to the cognitive and task
needs of the user. For example, the initiation of a second task in the middle
of a first task may be very useful in order to get information necessary for the
completion of the first task. In this case, an interface design to support the
user would allow the second task to be interleaved, so it does not destroy the
context of the first task.

The repeating disjunction allows a very limited measure of asynchronism at
a high level by allowing a choice of tasks. Once a sequence is initiated,
however, no interruption, interleaving, or concurrency is allowed.

With order independence, all actions must be performed and each one
completed before another is begun. But the constraint on the specific ordering
among the actions is removed. Interleaving removes the constraint of being
performed to completion before beginning another action, allowing an action
to be interrupted.

Interleavability and concurrency are defined in different ways, but they
share the fact that lifetimes of tasks can overlap. But interleavability means
periods of activity cannot overlap, whereas they can in concurrency. The
difference between interleaving and concurrency is something like the
difference between real and apparent concurrency in an operating system
(Lorin, 1972). Although multiprogramming is based on interleaving of
processes, for many purposes the processes are regarded as being concurrent.
Real concurrency, however, requires multiprocessing, such as is found
between a central processor and an input/output processor (channel) in the
hardware. Similarly, one can see the difference between interleaving and
concurrency at the level of physical user actions, but perhaps not always at the
level of the user's mental model of the tasks.

Analysis of the various cases using temporal relations gives the designer the
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ability to distinguish task types that are significantly different but that,
without these relations, would be difficult to identify. Furthermore, adding
operators to the UAN to express these relations gives the designer a powerful
means of representing such interfaces.
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APPENDIX. MATHEMATICAL SYMBOLOGY

Symbol Meaning

aRp a is related to 8 by relation R
If and only if

Such that

Such that (in set notation)
Disjunction or logical OR
Logical AND

Logical NOT

Implies

For all

There exists a

Is a member of (set)

Is a subset of

Cartesian product (of sets)
Maps to

Is a tautology (theorem) that
Set union

Boolean, true if « is primitive
Aa) The action set of task a

>> Can invoke

Mp It is possible that p (is true)
<a> Task « is not interruptible

. Can interruptibly invoke

CrlxNmwayld >——Uwg

-]
=]

2
R

~

Note. The symbols are listed here approxi-
mately in the order of their appearance.
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ABSTRACT

Metamouse is a demonstrational interface for graphicat sditing tasks within
a drawing program. The user specifies a procedure by performing an example
execution trace and creating graphical tools where necessary to help make
constraints explicit. The system generalizes the user’s action sequence,
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1. INTRODUCTION

The direct manipulation interface introduced in the Xerox Star (Johnson et
al., 1989; Smith, Irby, Kimball, Verplank, & Harslem, 1982) and popular-
ized by the Macintosh (Williams, 1984) has encouraged people to use
computers in their writing, drawing, and management activities. A serious
shortcoming of current interactive point-and-click systems is their failure to
supply a natural way for end users to create programs within the user
interface. Without programming, only those operations designed into the
system are automated —The rest are left for the user to perform manually.
Enriching the system’s repertoire with libraries of special commands, and
enriching commands with optional arguments (as in Unix), tends to alienate
the very people who are drawn to the simplicity of direct manipulation. An
alternative approach is to base a system on relatively few primitive operations
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but to make it easy for end users to customize, creating their own procedures
and importing those of others when desired.

End user programming conflicts with the idea of direct manipulation
because programs must include abstractions of objects and relations—And
direct manipulation is about concrcte, litcral communication between user
and machine. Programming a sequence of menu selections by demonstration
is simple; the difficulty comes with the need to use abstractions (like variables
and functions) and control structures (like iteration and conditional branch-
ing) that are normally implicit within a task. Although they can be specified
by annotating the demonstration (e.g., Halbert, 1984; Pence & Wakefield,
1988), this distracts from real work, tends to deter users from setting up
programs, and (except in very simple tasks) is unsuited to those who have not
been exposed to the art of programming. The alternative is to infer
abstractions from the concrete traces that users provide. This will not be
feasible unless search is restricted by focusing the system’s attention on a small
number of features at each step (Heise, 1989), and the system cannot reliably
select these features itself without some help from the user and from domain
knowledge.

Metamouse is a system for programming by example that helps users with
annotation and focus of attention through a “coaching’ metaphor. Users
imagine they are training a graphical turtle named Basil. To work effectively,
they must understand the limits on Basil’s powers of perception and inference
and be aware of his focus of attention. The system communicates this
information economically by moving Basil to locations selected by the mouse,
by highlighting objects he senses, and by asking questions through dialogue
boxes (MacDonald & Witten, 1987). Throughout this article, Basi! refers to
the agent perceived by the user, and Metamouse refers to the underlying
system.

Interaction supports the coaching metaphor in three ways. First, the Basil
persona rationalizes the system’s task model, including its focus of attention
(nearby touch relations) and limits on its ability to make generalizations.
Users understand that because Basil works by touch, measurements normally
done “by eye” must be expressed by graphical construction. This extra
information limits the search for generalizations but can be specified without
abandoning the drawing program’s direct-manipulation interface. Second,
Basil demonstrates what he has learned at the earliest opportunity, so that
users can benefit from it or correct it, as appropriate. Basil observes the user
at work until he recognizes a pattern already learned, then predicts future
actions, performing them for the user’s approval. If he errs, or cannot find an
action that fits the current situation, the user must res::me demonstration.
Third, Basil reacts immediately to the user’s actions by “sroviding feedback
about postconditions, from which program variables and conditional opera-
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tors are abstracted. Feedback is graphical and limited to a simple classification
of Basil’s perceptions~Objects and relations between them are highlighted
one way if they are considered important and another if merely observed.
Should Basil need more information about the current postconditions, he
requests it through a pop-up dialogue tha’ provides the possible replies.

In summary, Metamouse is an instructible system for graphical editing
tasks. It learns complex, customized, iterative procedures based on a few
editing primitives and serves as an easy, effective technique for program-
ming. It learns incrementally, so that a procedure invoked under circum-
stances that differ from those in which it was taught may be extended (or
generalized, or debugged) quickly and easily. This greatly increases the
reusability of end user programs.

A prototype has been implemented that exhibits the basic structure and
capabilities of an apprenticeship learning system. It observes the user’s
actions, performs a localized analysis of changes in spatial relations to isolate
constraints, and matches action sequences to build a state graph that may
contain conditional branches and loops. It induces variables for objects and
distinguishes constants from run-time input parameters. It includes a sym-
bolic (name-binding) and numeric (range-intersecting) constraint solver to
perform the actions it has learned.

This article describes the system’s design, implementation, and initial
evaluation. We begin by illustrating how Metamouse can help the user with
three particular graphical tasks. We review the history of tools to help
automate graphical editing and contrast our approach with two main
competitors, constraint-based and procedure-based systems, showing how it
combines elements of both. We also briefly review similarity- and
explanation-based generalization, techniques of machine learning that bear
directly on demonstrational interfaces. Section 4 describes the components of
the Metamouse system and how they work together. Section 5 evaluates its
performance, first by showing how it copes with the three example tasks and
then by describing a small experiment on how human subjects come to
understand it. Finally, we appraise the limitations of the existing implemen-
tation and discuss how they might be overcome.

2. APPLICATIONS

Aesthetically pleasing, visually coherent, meaningful pictures are charac-
terized by the spatial relations that group components, suggest relative
importance, lead the eye through a visual narrative, and reveal subtle
connections. With or without the help of a computer, a graphic artist must
manage complex, competing relationships that may require compromise or
careful ordering to be resolved. A formal computational model of such a
design process is constraint resolution. Under this model, a drawing evolves
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as objects and constraints are added, altered, or removed. The interaction of
constraints is resolved (if possible) by update procedures; for instance,
globally changing a typeface in a flowchart triggers an update to enlarge
boxes, which triggers an update to reposition them. Performing such updates
manually is repetitive work that demands precision, planning, and patience.

Metamouse automates a constraint update procedure by observing a
sequence of edits demonstrated by the user, from which it infers action goals,
variables, iteration, and branching. A goal is a conjunction of constraints to
be achieved by a single editing step; for instance, if the user drags a box so
that the midpoint of its top edge touches the end of one line and the midpoint
of its right edge touches the end of another line, the action’s goal is this pair
of touch constraints. An action goal is a subgoal of the whole procedure.

Note that the term constraint in this article means “a spatial relation of special
interest.” In much of the user interface literature, exemplified by Sutherland
(1963) and by Borning (1986), the term is restricted to relations that must
persist as a drawing is altered and implies that constraint violations trigger
update procedures. Our more general usage applies also to tasks that
introduce and alter relations. Metamouse does not explicitly represent the
goal of an entire procedure (which may be arbitrarily complex), so it does not
trigger updates automatically. A feasible extension to the system would allow
the user to attach a procedure to some editing action that affects a given set
objects, so that constraints (in the traditional sense) would be restored.

In the remainder of this section, we describe three tasks that exemplify
important problems for users of interactive drafting packages: maintaining
integrity of constraints throughout the editing process, coping with the tedium
of repetition, and assimilating minor variations of a procedure. The need to
achieve precision exceeding that of hand and eye, within a direct-
manipulation system that shuns abstraction, underlies them all. The perfor-
mance of the Metamouse system on these tasks is evaluated in Section 5.

2.1. Moving a Stove

The first task illustrates a procedure to maintain constraints when a picture
is edited, the use of an auxiliary object (a tie-line) to visualize a primary
constraint, and sequential demonstration to express constraint dependencies.
Figure 1 shows what happens when a kitchen design is altered by moving the
stove (note that graphics are less detailed in our drawing program, but the
actions are identical). Whenever the designer moves the stove, the computer
should respond by relocating the hood above the burners and stretching or
shortening the stovepipe from the wall exit (cf. Figures la and 1f). The
designer expresses the desired relative position of stove and hood by drawing
a tie-line between them (Figure 1b). He or she demonstrates the procedure’s
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Figure 1. Maintaining constraints among objects.
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d. Move tie-line to touch e. Move hood 1o touch . Delete tie-line and
stove asinb. tie-line as in b. stretch stovepipe to hood.

input and desired response by performing the complete edit as follows. First,
he or she moves the stove (Figure 1c). The only change in touch (between
tie-line and stove) is judged not to constrain the new position; by default this
is an input. The user then drags the tie-line to touch the stove as before
(Figure 1d). In the next steps, the user drags the hood to the tie-line (Figure
1e), deletes the tie-line, and stretches the stovepipe to the hood (Figure If).
The complete procedure is named, stored, and added to a menu.

When reinvoked, the routine draws the tie-line between stove and hood,
then asks the user to move the stove. When the user signals that he or she is
done, the computer repositions the hood and reconnects the stovepipe, using
the touch constraints it had inferred. If the user dragged the stove (say,
downward) so that some constraint could not be solved (in this case, stretching
the pipe to the hood), the system would ask him or her to demonstrate actions
appropriate to that case.

2.2. Sorting a Bar Chart

In Figure 2, a set of rectangles is sorted by height and spaced in even
intervals. This task illustrates iteration, precision, a selection rule, inputs, and
constants. To teach it, the user must express implicit relationships such as
distance and relative height using construction tools. Figure 2 shows the
demonstration. Two display options have been set: show black tacks to
indicate important touch relations, and show the turtle icon when predicting
actions.

As a first step, the user draws a sweepline below the four boxes (Figure 2b).
Finding no tactile constraints on its endpoints, Basil suggests they are inputs;
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Figure 2. A group of boxes is sorted by height.
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the user replies that they are constants. Next, the user draws a spacer at the
left of the screen to control the distance between boxes (Figure 2b); it is an
input. He or she picks the sweepline and drags it upward until it touches the
top of a box— This selects the shortest one above it (Figure 2¢c). He or she
moves that box to the near end of the spacer (Figure 2d), then relocates the
spacer to its opposite side (Figure 2e). Although both box and spacer are
touching other objects as well, Basil places a tack where they meet, to let the
user know he considers this to be the only important constraint on these
actions. When the user picks the sweepline a second time, Basil predicts the
loop by moving the line upward until it touches the top of some box it has not
touched in this way before (Figure 2f). Because the user accepts this loop,
Basil performs all subsequent editing (Figures 2g-2h) until no box remains in
the sweepline’s path. Failure to find a box is the loop’s terminating condition.
Basil then asks the user to demonstrate the rest of the program, which involves
removing the construction tools (Figure 2i) and signaling that the lesson is
over.

When this program is later invoked from the tasks menu, Basil creates a
sweepline at the same window coordinates as before. When he creates a
spacer, he invites the user to edit it, because its position and length are inputs.
Basil then performs the entire sort, regardless of the number of boxes.
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2.3. Aligning Boxes

Figure 3 shows a set of boxes moved horizontally to an arbitrary guideline
given by the user. As in the sorting task, constraint amongst a set of objects
is implemented by positioning each one using an auxiliary “tool,” in this case
the guideline. In Figure 3, the display options are to show Basil at all titnes
and to show not only black tacks but also white ones, which indicate incidental
touches. The figure also includes the dialogue boxes through which Basil
confirms hypotheses.

When the user draws the guideline (Figure 3a), its endpoints are
unconstrained; the default selection in the dialogue box indicates that Basil
assumes they are inputs. The user then draws a sweepline (to ensure that
boxes move horizontally); the fact that it crosses the guideline does not
constrain its endpoints, so Basil assumes they are inputs also, but the user
replies that the locations are constant (Figure 3b). The user picks the
sweepline (Figure 3c) and drags it up to the first box; Basil infers that contact
with the bottomn of the next higher box terminates this action and marks the
constraints with black tacks (Figure 3d). The user grasps the same box and
drags it to the point where the guideline and sweepline cross; Basil infers that
this three-way contact specifies where the box should go (Figure 3e). A third
touch relation, between the box’s lower left corner and the sweepline, is
marked with a white tack, indicating that Basil does not consider it a
constraint. When the user reselects the sweepline (Figure 3f), Basil conjec-
tures a loop and confirms it by performing the remaining iterations
(Figures 3g-3j). The first prediction involves searching for a box; Basil
confirms that it should be somewhere above his current position (the
“heading” dialogue in Figure 3g). At each s :p, Basil asks for confirmation.
Loop termination is detected as in the sorting task (Figure 3k). The user
completes the task by deleting the tools (Figure 31).

2.4. Adapting “Align Boxes”

One of the advantages of using a learning system is that a new task may ho
taught as a variant of something the system already knows how to do. This
increases the reusability of procedures: The user can invoke one that roughly
fits the current problem, obtain immediate performance from those parts of
it that are applicable, and manually perform (i.e., teach) the rest. An example
of this is shown in Figure 4. This task differs from “align boxes” in several
ways (see Figures 4a-4b): The box at the far left is to remain where it is;
tie-lines into boxes’ left sides must be reconnected, and tie-lines from the
upper and lower box into the middle one are to be reconnected to the latter at




Figure 3. Teaching Basil to align a set of boxes.
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Figure 4. Aligning boxes and editing tie-lines.
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the middle rather than the left edge. The resulting program is shown in Figure
5; white circles are nodes created for align boxes, and black ones are for the
variant.

The user begins by invoking the align boxes task. Basil draws the guideline
at its default position and invites the user to edit it. When he or she is done,
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Figure 5. Program induced for “aligning boxes” task and variant.

Referto figs 34 4  Node no. and description

(3a,4¢c) 1. locate position (ask-user)
(3a, 4c) 2. draw-line Guideline 10 position (ask-user)
(3b, 4c) 3. locate position (constant)
(3b, 4c) 4. draw-line Sweaepline to position (constant)
(3cfj, 4dek) 5. select grasp (Sweepline.midpt)
(3dgj, 4dk) 6. drag to touch (Sweepline.? : Box.bottom.left)
touch (Sweepline.? : Box.bottom.right)
(3ehj, 4k 7. select grasp (Box.center)
(3aij, 4dk) 8. drag to touch (Box.bottom.right : Guideline.?)

touch (Box.bottom.right : Sweapline.?)

(3i,4m) 9. delete Sweepline
(3i, 4m) 10. sselect grasp (Guideline.?)
(3i, 4m) 11, delete Guideline

(4f) 12. select grasp (BoxLeftTie.end)
(4f) 13. drag to touch (BoxLeftTie.end : Box.mid.left)

(4i) 14. select grasp (BoxAtRight.center)
(4j) 15. drag to touch (BoxAtRight.b right : Guideline.?)
touch (BoxAtRight.b right : Sy 7

P

[———————— {4n) 16. select grasp (C-DTie.starnt)
Legend {4n) 17. drag 1o touch (C-DTie.start : BoxD bottom.mid)
@ original trace (4n) 18. select grasp (C-DTie.end)
K (4n) 19. drag to touch (C-DTie.end : BoxC.top.mid)
@ variantrace (40) 20. select grasp (B-CTia.start)
¢ orderof (40) 21. drag to touch (B-CTia.start : BoxC.bottom.mid)
2 prediction (40) 22. select grasp (B-CTie.end)

(40) 23. drag to touch (B-CTie.end : BoxB.top.mid)

Basil draws the sweepline (Figure 4c), drags it up to the first box, and
performs the alignment (Figure 4d), all of which the user accepts. When Basil
goes to grasp the sweepline again, the user stops him and reattaches the
tie-line (Figure 4f). This creates a branch in which the new action will be
predicted at higher priority (see Figure 5, transition from Nodes 8 to 12 vs. 5).

When the user picks the sweepline (Figure 4g), Basil recognizes this and
conjectures a return to the main loop by dragging it up to the next box. Basil
arbitrarily picks the one at the left (marked “A” in Figure 4h); the user rejects
this and picks Box C (Figure 4i). This introduces another branch from Nodes
6 to 14 versus 7 (Figure 5). When the user moves C to the guideline (Figure
4j), Basil fails to match this with the existing program (due to our implemen-
tation’s simplistic conventions on merging variables). The user’s return to the
sweepline is recognized, whereupon Basil drags it to Box D. He tries the new
branch to Node 14, but it fails for lack of a second box at the sweepline.
Instead, he follows the old branch, aligning Box D (Figure 4k) and, taking the
branch to Node 12, reattaching its tie-line (Figure 4l).

Basil correctly exits from the loop and removes the tools (Figure 4m). When
he predicts the end of the task, the user disagrees and edits the tie-lines from
D to C (Figure 4n) and from C to B (Figure 40), thus introducing a final
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branch. The user can save the altered procedure as a new task or replace the
old version. In either case, when it is reinvoked, the most recently taught
branches are given priority, but their older alternatives are still accessible in
case an entry condition fails.

This example illustrates the trading of control that can occur when
debugging or adapting a procedure with Basil. These interruptions are
worthwhile if the computer performs most of the work, or the most difficult
parts of it, or if the procedure is to be reused often. Of 32 steps in this task,
Basil performed 18. Improvements to Basil’s generalization of actions would
increase this to 20 (and eliminate the branch to Nodes 14 and 15). Of nine
steps that involved precision positioning (aligning, reconnecting ties), Basil
did three. Feasible extensions of the system to generalize over symmetries
would enable him to perform five or six of the nine.

3. BACKGROUND

Historically, the automation of graphical editing tasks has progressed in
two directions: interactive tools to help users with constraints and graphics-
oriented programming systems. The first seeks to improve either the natu-
ralness or the power of declaratively specified constraints, whereas the second
takes a procedural approach and lets the user construct programs that express
his or her intention in geometric terms. Metamouse adopts a synthesis of the
two. Constraints are not declared explicitly by users but are inferred from
their actions, whereas, to overcome the intractability of inference, a proce-
dural representation is used to decompose complex global constraints into
structured sequences of local ones.

3.1. The Declarative Approach

The exploitation of constraints in interactive graphics began with
SkeTCHPAD (Sutherland, 1963), which used numerical relaxation to resolve
several types of constraints: that lines be vertical, horizontal, parallel, or
perpendicular, that points lie on lines or circles; that symbols stand in vertical
rows or be attached to points or lines. An interactive editing sequence
typically involved new object definitions interleaved with constraint specifi-
cations. These early ideas are used in contemporary interactive drafting
systems.

Two principal methods are used to facilitate high-precision interactive
positioning: gravity and relaxation. Gravity fields, which come in various forms
in graphics systems (Foley & Van Dam, 1982), are limited in expressive power
and offer only a small fraction of the desired types of precision. Relaxation-
based methods are exemplified by White’s (1988) “human interface to least
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squares,” which lets users place constraints on distances and angles and then,
on request through an adjust command, solves them using least-squares
relaxation. Such systems force users to specify additional structures that are
often difficult to understand and time consuming to manipulate. To combine
the convenience of grids with the power of constraints, Bier and Stone’s (1986)
SNaP-DRAGGING technique equips users with a variety of alignment objects—
such as circles of specified sizes, horizontal and vertical lines—and “snaps”
points of the drawing onto them. Once used, however, constraints are
discarded, and subsequent manipulations do not respect the original posi-
tioning operations.

Most constraint-satisfaction drawing aids do not allow users to define new
constraints. For example, to add new kinds of constraints to the original
THincLAB (Borning, 1981), one had to write code in SMALLTALK. However,
the system has since been extended to allow graphical definition of constraints
(Borning, 1986). The user draws an equational network with icons that
represent variables, constants, arithmetic operators, and function calls to
other constraint routines. To define variables, one draws an example and
labels points accordingly. Of course, the equational network requires users to
have algebraic models of their problems.

Drawing is naturally procedural (van Sommers, 1984), but constraint
systems are declarative. THINGLAB insists on the user specifying programs
declaratively. In White’s (1988) scheme, constraints are remembered, so that
points, lines, and constraints can be added in any order and reapplied at any
time, but it is not possible to store or manipulate a sequence of constraint-
satisfaction problems.

3.2. The Procedural Approach

Computer drawing was originally a form of programming, with images
intended for production on a plotter being expressed as FORTRAN procedures.
The theoretical basis for computer graphics was provided by Descartes’s
conceptual breakthrough of making geometry algebraic—although the sup-
porting technology was a long time coming. From the point of view of the
user, however, Descartes’s invention was a faux pas. A more intuitive
formulation of procedural graphics was created by the ancient Greeks—
indeed geometry inspired the first investigations into the very notion of a
formal procedure (Preparata & Shamos, 1985). In the last two decades,
constructive computer graphics have moved from an algebraic model toward
purely geometric specification of graphical procedures.

For example, LEGO specifies constraints using the traditional ruler and
compass of geometric construction (Fuller & Prusinkiewicz, 1988). It provides
primitives point, line, and circle and an operator that returns one or two points
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of intersection between objects. Constructions can be automated by proce-
dural programming. Variables are identified by naming points—in this case
those returned by the intersection function. Although a graphical interface is
incorporated so that users can specify procedural constructs by menu
selection, users are required to identify input and output variables and control
structures explicitly. Noma et al. (1988) also based a graphics language on
Euclid’s primitives: Users create geometric constructions by writing small
programs in this language. Concrete objects are named, but abstractions (like
the length of a line) are not, because the concept of a variable was held to be
too difficult for ordinary users. Instead, the language provides a limited
stacking facility to allow each primitive in the program to communicate
parameters to the next.

Procedural Euclidean geometry is a viable alternative to constraint systems
for specifying figures to high precision. Kin, Noma, and Kunii (1989) argued
that it is superior in two respects: Constraint systems require considerable
computation for large problems whereas constructive geometry is linear in the
number of objects, and specifying consistent and sufficient constraints for a
desired picture is a difficult task. However, the small and elegant set of
Euclidean primitives, designed to provide a minimal basis for traditional
“ruler-and-compass” methods of construction, does not relate well to real-life
drawing — witness the fact that popular drafting programs find it expedient to
offer a much richer set of pragmatically motivated objects and operations.
More important, the need to deal explicitly with procedural abstractions,
expressed noninteractively as text or interactively through menu selection,
negates the advantages of direct-manipulation environments.

3.3. The Metamouse Approach

Instead of asking for an explicit specification of constraints or procedures,
Metamouse observes the user at work and infers elementary relationships,
constants, variables, loops, and branches. This is programming by example:
Programs are constructed incrementally from execution traces. Some schemes
that base programs on user-supplied example traces nevertheless force the
user to work with programming abstractions. In TEMPO (Pence & Wakefield,
1988), users declare loops and conditional branches; SMALLSTAR (Halbert,
1984), which operates in a very general desktop domain, asks them to identify
variables and their type and value range. PERIDOT (Myers, 1988) infers the
range of a variable’s legal values, certain spatial relations (e.g., “centered
within box”), iteration over a list of objects, and the setting of active values
conditional on selecting an object or mouse button. It does not infer
conditional branches that affect flow of control and, hence, does not handle
loops in general. Virtually no systems rely completely on automatic general-
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Figure 6. Visualizing constraints.
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ization; one that does, NODDY (Andreae, 1985), performs an exponentially
complex induction of functions and cannot cope with errors.

Inferring a program is not easy, but inducing complex transforms from
examples of input and output is completely intractable (Angluin & Smith,
1983). In effect, a demonstration decomposes the transform into a sequence
of simpler ones. Drawing is inherently procedural, often systematically
ordered with each step governed by very few constraints (van Sommers,
1984). Nonetheless, it is hard to induce procedures even from simple steps.
Typical users do not always construct the relevant measurements and
relations, but work instead by visual inspection. Their drawings may lack
important construction objects. For instance, in Figure 6a, the square on the
right is actually aligned with the diagonals of the squares on the left; these
constraints are visualized in Figure 6b. But inferring constraints from a
picture is unreliable because some relations may be incidental. In Figure 6b,
the contacts between diagonal lines and the corners of the square seem to be
constraints; a second example using a rectangle instead of a square (Figure 6¢)
demonstrates that these relations are incidental, taat the constraint is between
the diagonals and the rectangle’s center. Curve-matching methods such as
those employed in graphical search and replace (Kurlander & Bier, 1988) are
successful enough to induce patterns in drawings that contain “invisible
objects” or incidental relations. Moreover, examining the whole screen for
implicit spatial relations would often require an infeasible number of tests and
vastly expand the space of hypotheses for generalization. This is why our
systern restricts its attention to visible touch relations produced by explicit
actions, marks touches with tacks so users can identify constraints by pointing
at them, and asks users to specify complex relations by stepwise construction.
To make this palatable, we adopt the coaching metaphor, which combines
demonstration, observation, correction, and instruction. Qur hypothesis is
that, by coaching, the user will gain insights needed to present explicit
demonstrations and use constructions.

Our metaphorical apprentice employs both interaction and generalization
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to create a procedural model of the user’s actions. It is the focus of attention
of both user and system. Only local constraints involving it or an object it is
grasping are examined. It incorporates an internal model of graphical
constraints and asks for explanation when an action seems arbitrary (i.e.,
insufficiently constrained). Rules of interaction between human teachers and
pupils have been formulated as “felicity conditions” (Van Lehn, 1983, p. 11),
and these apply when coaching Basil too: in particular correctness (examples
shown are assumed to be correct), show work (demonstrate execution rather
than just input and output), no invisible objects (express constraints by graphical
construction), and focus actwity (eliminate extraneous actions). To help
untrained teachers obey these rules, Basil builds 2 model of the user’s actions
dynamically and predicts them as early as possible during a coaching session.
The metaphor encourages the teacher to demonstrate constraints and adopt
an intentional stance toward the system (Dennett, 1987) rather than guess the
mechanisms behind its constraint and generalization models. Whether or not
it succeeds is an experimental question, but initial results are encouraging
(Section 5).

3.4. Machine Learning and Generalization

To create procedures from examples of their execution, Metamouse uses
some generalization techniques that have been developed in the context of
machine learning. A fundamental distinction in this area is between
similarity-based learning and knowledge-intensive processes such as
explanation-based learning (Witten & MacDonald, 1988). Given a set of
objects that represents examples and counterexamples of a concept, a
similarity-based learner attempts to induce a generalized description that
encompasses all the positive examples and none of the counterexamples.
Typically, background knowledge is not brought to bear on the problem
except insofar as it is used to delimit the space of possible descriptions that are
considered (Mitchell, 1982). In contrast, explanation-based generalization
methods take a single example and deduce a general rule by relating it to an
existing theory (Ellman, 1989). In effect they use examples to guide the
operationalization of knowledge already implicitly known, so that it can
henceforth be employed more efficiently.

The Metamouse system contains elements of both types of learning.
Similarity-based learning is used when forming a sequential procedural model
of a sequence of actions. User-demonstrated actions are assumed to be
positive examples of connections in the model, as are those actions predicted
by Basil and accepted by the user. Negative examples arise from predicting
actions that the user rejects. The space searched is the set of automation
models consistent with the observed action sequence. A domain theory of
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programs — which might, for example, relate programs to their effects in some
formal denotational semantics—is not used to guide generalization, because
of its extreme complexity.

Explanation-based learning is used in two ways. First, the user is encour-
aged to create an explicit explanation of his or her action sequence by
employing constructive techniques to reveal hidden relationships. This differs
from conventional explanation-based learning in that the user is responsible
for coming up with the explanation. If he or she fails to do so, learning will
not just become bogged down while the system seeks its own explanation but
will fail completely. That is why we take great pains to encourage the user to
demonstrate constructions explicitly. The alternative, to seek a theory that
permits different constructions to be postulated and evaluated, seems tco
underconstrained to contemplate seriously.

The second use of explanation-based learning relates (o identifying local
constraints that govern actions. As explained more fully in Section 4.7,
Metamouse incorporates a simple theory that distinguishes levels of signifi-
cance of observed touches. The most significant are sifted out as constraints.
This is a classic use of explanation-based learning to identify, via some
domain theory, a subset of the currently available information that serves to
identify an equivalent situation rapidly in the future. The domain theory in
this case is weak in the sense that its theorems are neither universal nor
rigorously derived, but encapsulate important observed tendencies in the
making of drawings. If an explanation is incorrect in a given situation, the
wrong constraints will be stored and the system will either be inefficient or
incorrect in identifying an analogous situation in the future. If it is incorrect,
the user will reject its prediction and enter the correct one, which will permit
the information—but not the underlying theory—to be refined, perhaps
corrected.

4. SYSTEM COMPONENTS

Basil inhabits a simple interactive graphics environment. The user teaches
editing procedures by demonstration, occasionally issuing simple instructions
to focus attention and correct mistaken inferences. “Teaching mode” is
identical to normal editing except that the turtle icon marks the most recent
mouse click’s location, and tacks mark intersecting objects. The learning
module records each drawing operation at closure (a mouse click); until then,
Basil waits at his last position, indicating that intermediate activity is ignored.
The learning module associates objects with variables and distinguishes
constraints from incidental touches. In constructing a program, it matches
user actions with states and confirms a loop or a joining of branches by
predicting subsequent actions. Program states are generalized actions, bound
to the current situation by a constraint solver. If the constraints have no
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Figuve 7. Highlighting distinguished points ncar cursor (arrowhead).

e

Q o
L =

a. Near edge of box. b. Near vertex of two lines.

solution (e.g., because a pool of objects for selection has been exhausted), the
system forms a branch conditional on those constraints. The learning
module’s hypotheses (expressed in actions, icons, and menus) can be corrected
through direct manipulation: by performing the desired action, clicking on a
tack, or picking an alternative menu item.

4.1. Drawing Program

The drawing program A.Sq' resembles MacDraw (Cutter, Halpern, &
Spiegel, 1987) but includes only box and line primitives. The program has
three modes (each indicated by a special cursor): create-boxes, create-lines, and
edit-objects. The user edits objects by moving iconic handles, which appear
whenever the cursor approaches them, as illustrated in Figure 7. Unlike
MacDraw, A.Sq provides a multilevel undo/redo.

The choice of primitives and operators has a great impact on the user’s
expression of constraints. A.Sq’s primitive object types, auxiliary data
structures, and operators are summarized in Figure 8. Points on the boundary
of an object are represented in a parametric form. Any point on a line is
designated by a number between 0 and 1, and on a rectangle by a number
between 0 and 4. Thus, each vertex is a whole number, and each edge is a line
in parametric form. Coordinates and corresponding part names are shown in
Figure 9.

The basic drawing operation is to select a point on the canvas, which becomes
CurrentPoint. According to mode, this results in selecting an object or handle,
creating a graphic, or relocating a handle. The user and Basil view actions at
a much higher level than A.Sq. For instance, drawing a new box involves a
pair of actions for the user/Basil: in create-boxes mode, locate Vertex 0; then
locate Vertex 2. A.Sq does the following: In create-boxes mode, select-point sets
CurrentPoint and then activates new-box to allocate a rectangle having its
Vertex 0 there; new-box temporarily sets the mode to edit-objects, executes
select-handle and translate-handle-of-object-to-point for the handle at Vertex 2, whose

! Named after the protagonist of Flatland (Abbott, 1884).
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Figure 8. Elements of the A.Sq drawing program.
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Graphic

object types

Box: Specified by top.left = (x,, y,), bottom.right = (x,, y,);
edge coordinates 0 < top < | =< right £ 2 < bottom =< 3
< left < 4;
handles at each vertex, midpoint of edge, and center
(Coordinate 5).
Line: Specified by start = (x;, y,), end = (x5, y;);
edge coordinates 0 . . . 1 (e.g., midpoint = 0.5);
handles at start, end, and midpoint.

Auxiliary
objects

Mode: {create-boxes, create-lines, edit-objects}.

CurrentPoint: (x, y) location most recently selected by user.
PreviousPoint: Previous value of CurrentPoint.
CurrentObject: Graphic object most recently selected by user.

Handle: Currently selected (activated) handle of CurrentObject.

DisplayList: List of graphic objects in drawing.
ActionStack: List of actions done or redone (see later).
UndoneStack: List of actions undone (see later).

Drawing
operators

Action
operators

[Note: Arguments marked « are accessed; » are set; *reference
objects that are altered.]

Set-mode («fcreate-boxes, create-lines, edit-objects},» Mode).

Select-point («X, «Y, »PreviousPoint, « »CurrentPoint).

Select-object («DisplayList, «CurrentPoint, »CurrentObject).

Select-handle («CurrentPoint, «CurrentObject, »Handle).

New-line («CurrentPoint, »*CurrentObject, »DisplayList).

New-box («CurrentPoint, »*CurrentObject, »DisplayList).

Translate-handle-of-object-to-point (»PreviousPoint,
»CurrentPoint, «*Handle, «*CurrentObject).

Delete-object (« »CurrentObject).

Undo («ActionStack, »UndoneStack).

Redo («UndoneStack, »ActionStack).

Define-action («Operator, «PreviousPoint, «CurrentPoint,
«CurrentObject, »*Action, »ActionStack).

interaction method in turn invokes select-point, which (because the mode is
edit-objects) activates rubber banding as the user relocates Vertex 2.

At present, the drawing program is relatively simple yet rich enough to
study programming-by-example issues. No conceptual difficulties are envis-
aged in extending the system to work with touch constraints among polygons,
ellipses, and splines. We also expect to be able to accommodate new
operations such as rotation, grouping, and coloring.

4.2. Basil and the User Interface

Prior to working with Basil, users skim the biosheet reproduced in Figure
10. Its concrete language and simple examples are intended to give an initial
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Figure 9. Selector functions for part of an object.
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conceptual model of Basil's dependence on explicit construction of spatial
relations so that users might meet the “show work” and “no invisible objects”
felicity conditions (see Section 3.3). Further guidance is provided by several
interaction devices: the Basil and Tasks menus, the turte icon, touch
indicators, and dialogue boxes.

The Basil menu contains two items that toggle their contents to set the
teaching mode. The command pairs are: begin/end lesson; and suspend/resume
walching user actions. The latter allows the user to work out a construction or fix
up the drawing without introducing irrelevant steps into the program. A third
useful mode would be begin/end block of actions to be done only by the user; thus a
program could contain arbitrary manual steps.

The Tasks menu contains names of procedures the user has taught Basil. It
is possible to select from this while teaching so that tasks may be embedded,
although the subroutine inherits no context from the current procedure.

The turtle icon has two purposes: to remind users that they are coaching
and to indicate the system’s focus of attention. It moves to CurrentPoint
(figuratively, Basil’s snout) after each drawing action, thus maintaining the
context of relative motions.

Basil is described as near-sighted but touch-sensitive; moreover, the user
needs to understand that only binary touch relations including Basil or
CurrentObject (figuratively, the one “grasped” by the turtle) are checked. If the
user intends that more remote touches play a role, he or she must move Basil
to the relevant objects to check for them. To convey Basil's restricted focus of
attention, the system marks touch relations it observes with tack icons, as
shown in Figure 11. Black tacks mark touches that Basil considers to be
important constraints; white tacks mark incidental touches. If the user
disagrees, he or she may click on a tack to change it from black to white or vice
versa,

Nonblocking (i.e., response optional) dialogue boxes present the system’s
hypothesis about Basil’s path or implicit constraints. The path is shown in the
prompt and in the turtle icon’s heading (Figure 3g); should the user disagree,
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Figure 10. Description of Mectamouse given to users.

Basil is a turtle that helps you with precise, repetitive drawing. it Rayil

repeated sieps .
» moves objects so they touch precisely at comers, ends and centers

To teach him, choose “New task™ from the “Basil” menu.
“Save task™ when done.

To interrupt a lesson, choose “Take a nap™.
“Wake up!” to resume.

When you select or move an object, Basil puts tacks
where it touches other things, as shown here.

The tack’s color tells whether he will make the « youwanto

touch happen when he does this action in future:

* black — important, make sure it happens!

« white — coincidental, don’t worry about it You dont care
whather

If you disagree with Basil’s guess, click on a tack to mzmm

change its color.

Basil builds pictures by plugging shapes Tools
together, like Tinker Toys.

Any shape can serve as a tool for positioning things,
like the line shown here to space and align two squares.

- Basil needs tools, because he learns only how things touch,
Step 1: Draw kne theu first square.’ not how they relate 1o each other at a distance.

S : Move second fine. i i
s::i ‘ng\{o r oﬁ: When you make a tool, show Basil step by step how to use it.

Swp 2

Basil can leam 10 scan for objects in four general directions, { Sweep
up, down, left, and right. His snout points where he is o
heading.

WA stop at this
If you disagree, click repeatedly on his shell 10 rotate him. D box third
He will search for the next object in that direction, as if
sweeping with a wide broom. Draw the brcom yourself (the
vertical line in the figure), to be sure which one he chooses *
next. Heading right, will stop at this box next

he or she is prompted to turn Basil to the desired heading by tapping on him.
The default implicit constraint (when no touch governs an action) is that the
position is set by the user (Figure 3a). Should the user disagree, he or she may
select “always here,” which means constant absolute position; “this far from
last point,” which means constant relative position; or “relative to an object,”
which means that the point should have been constructed. In the latter case,
Basil asks him or her to draw the construction and adjust the original object’s
position afterward if necessary. (The construction steps are inserted into the
procedure ahead of the original action.)
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Figure 11. Touch constraints are marked by tacks.
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The system puts up three blocking “yes/no” dialogue boxes. When the user’s
action matches some previous step, Basil requests permission to predict (Figure
3f). When performing a step, Basil displays a simplified description, stating
the operator and grasped object type, and asks the coach to accept or reject it
(Figures 3g-3j). A third option would be useful here: Always let the user do
this step. At the end of a lesson, the user is asked whether the task should be
saved: If so, he or she types in a name that will appear in the Tasks menu.

If an action is to be done by the user, Basil puts up a dialogue with the
abbreviated description and response options “Done” and “No.” The appro-
priate object is selected or created for the user to edit. In the case of a new
object, it is drawn at the same position as originally taught. When the user has
finished editing it, he or she clicks “Done.”

When no prediction is performable (as in Figure 3k), Basil displays an
adviscry message asking the user to demonstrate the default action.

The system has several display options, intended mainly for use in our
research. The turtle icon may be shown at all times during a lesson, only when
Basil is predicting an action, or not at all. Tacks of either color may be shown
or hidden.

4.3. Overview of Learning Module
Figure 12 depicts the learning system. During a demonstration cycle, in the

top half of the diagram, the user performs actions the system analyzes and
appends to the program. When a user action matches some existing program
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step, the system enters a prediction/performance cycle, shown in the dia-
gram’s lower half. Basil executes program actions until the user objects or no
step is performable. When this happens, Basil asks the user to take over and
the system returns to the demonstration cycle. The learning algorithm is
summarized in the following two paragraphs.

Demonstration Cycle. The Action Recorder observes each edit performed
by the user, noting its operator (e.g., drag-handle) and its observable
postconditions, which are touch relations involving CurrentObject. The
Action Matcher searches the program for a step whose goal is met by the new
action’s postconditions. If such a step is found, the system enters a prediction/
performance cycle (see next paragraph). Otherwise, the new action is
analyzed as follows. First, the Variable Inducer finds or allocates variables for
objects in touch relations. The action is then passed to the Constraint
Classifier, an explanation-based generalization module that uses domain
knowledge about the current operator in order to isolate those touches that
would constrain its parameter values. Thus, the action’s goal is identified as
a subset of its observed postconditions. Finally, the action is passed to the
Program Manager (not shown in Figure 12), which appends it to that branch
of the program currently being taught. Should the user’s action immediately
follow a rejected or failed prediction (see next paragraph), the step is added
as a new branch.

Prediction/Performance Cycle. 'When the Action Matcher finds a program
step whose goal is met by the user’s action, the Program Manager does two
things. First, it makes a link from the previous user action (the end of the new
branch) to the matched step; this link is subject to confirmation (to be
discussed later). Second, it updates the program state, marking the matched
step as the one most recently performed and rebinding variables to objects in
the user’s action. The system then selects the next program step for execution,
from among a preference-ordered list of alternatives. It predicts alternatives
until both the constraint solver and the user accept one, or until none remains.
In the former case, the program state advances, variables are updated, and
execution continues from the accepted step’s successors. In the latter, the
system returns to the demonstration cycle, with new actions to be appended
after the last accepted step. If at least one prediction was accepted during this
cycle, the new link is confirmed; otherwise it is deleted, the match is canceled,
and new actions will be appended to the branch from which the link was tried.

Note that an action is performed for the user only if the constraint solver
can instantiate its goal. Thus, failure is an implicit branching condition,
which is used to advantage in terminating loops. Our current implementation
does not infer explicit conditional tests on some subset of postconditions other
than the goal. Therefore, Metamouse cannot learn to choose an action based
on Basil’s current sensory information. Nevertheless, it can learn “if-then”
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Figure 12. Components of learning system.
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constructs, provided the user teaches the conditional test as (the goal of ) an
explicit action.

When the user rejects an action, it is moved to the end of the list of current
alternatives so that it will be predicted again only if all others fail to pass the
constraint solver. This tactic finesses the problems of debugging. It avoids
asking the user whether an action is erroneous in all situations, has an overly
general goal, depends on a conditional test that Basil cannot learn, or is
merely inappropriate in the current usage of this procedure. It also skirts the
problem of determining the extent of a bug, that is, what substructure of the
procedure ought to be deleted. A simple extension would make action
rejection a more reliable debugging method. There should be available a third
response to predictions: “Don’t predict this alternative again.”

4.4. Action Recorder

Each of the user’s editing actions is recorded, together with its context—a
part of A.Sq’s state isolated by Basil’s focus of attention. (Recording only part
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of the state constitutes implicit generalization.) All actions of the current
lesson are remembered in sequence in an Action Trace, from which the matcher
builds a program (Section 4.5). Each program step references the actions
from which it was generalized.

An ActionRecord has three components: Operator, Parameter, and Results. For
instance, when the user drags the sweepline upward to a box in Figure 3d, the
following is recorded:

Operator:  drag-handle

Parameter: Handle = LineO41. midpt

Results: CurrentPoint = (240,130)
grasp (Line041.[0.52])
touch (Line041.{0.07] : Box057.[3.00])
touch (Line041.[0.35] : Box057.[2.00])
touch (Line041.[0.38] : Line040.[0.22])

The Operator is a composite of those defined by the drawing program, so
that it corresponds with the granularity of actions as seen by the user—one
action per mouse click. Thus, the five basic operators are: locate, which places
a new graphic’s first point; select, which picks a new CurrentObject or active
Handle; draw-line and draw-box, which sweep out new objects; and drag-handle,
which translates the active Handle to a new CurrentPoint.

Parameter identifies CurrentObject and the currently active Handle (if Basil
is dragging or drawing something).

The Results are the action’s observed postconditions, comprising the new
mouse location (CurrentPoint) and a list of TouckRelations occurring in Basil’s
immediate vicinity. A subset of these, chosen by the constraint classifier
(Section 4.7), is assumed to be the action’s goal in the sense of Fikes and
Nilsson (1971)—a conjunction of results that must hold in every instance.
Restricting the sensory focus of attention reduces the time spent checking for
touches and simplifies both the inference and run-time evaluation of the goal.

To assemble TouchRelations, the recorder scans A.Sq’s DisplayList, se-
lecting graphics that touch either Basil or CurrentObject. A TouchRelation is
defined as:

touch (Object ;. Part; : Object,. Part,),

where, for i = 1 or 2, Part; is an edge coordinate in Object, (see Figure 8) and
Object; is the graphic’s address in DisplayList. Object, is either Basil or
CurrentObject. If Object, is Basil, then Part, is 0 (his snout). If Object, is
CurrentObject, the touch relation is distinguished as grasp(Object,. Part,)— The
difference between touch and grasp proves important when inducing con-
straints.

If the user undoes an action, it is removed from the trace and reference to
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it is removed from the corresponding program step. If the step represents no
other actions in the trace, it is replaced with a dummy node, which in effect
links all of its predecessors to its successors.

4.5. Action Matcher

The action matcher searches the program for a step that is equivalent to the
one just performed by the user. A step is equivalent to an action if it can
produce the same effects in the same situation: in other words, if the program
could have predicted the user’s action had it been told to do so.

A program learned by Basil is a directed graph of ProgremSteps with no
restrictions on connectivity: It may contain arbitrary multiway branches and
loops with jumps into or out of their bodies. An example is shown in Figure
5.

Each ProgramStep has three components: Predecessors, ActionGenerator, and
Successors. The first and third are lists of ProgramSteps that precede or follow
the given ProgramStep. Successors are ordered according to the priority at
which they may be predicted. ActionGenerator, a generalized ActionRecord
(Section 4.4), has three parts: Operator, Parameter, and Constraints. For example,
Step 5 of the align boxes task, in which the user grasps the sweepline (see
Figures 5 and 3c) is:

Predecessors: [Step4, Step8)
Successors: [Step6, Step9) Note: Do Step9 if Step6 fails
ActionGenerator:  Operator = select

FParameter = nil

Constraints = grasp ([L2 = Line041].[P9 = 0.5])

Operator is one of the five actions listed in Section 4.4, and Parameter specifies
the object and handle in Basil’s grasp prior to the action. Constraints make up
a set of touch relations or position specifiers that must hold after executing
Operator with the given Parameter. Constraints are generalized touch
relations, where variables (e.g., L2, P9) stand for object and part identifiers.
They are instantiated and checked by a constraint solver (Section 4.8).

A ProgramStep matches an ActionRecord if the following conditions hold
(they are checked in order for quick rejection of mismatches). First, Operators
must be the same. Second, the ActionRecord must contain at least as many
TouchRelations as the ProgramStep has Constraints. Third, Parameters must
agree: That is, the ProgramStep’s object and part selectors (see Section 4.6)
must generate the object address and part coordinates specified in the
ActionRecord (for the example just shown, they are nil). Fourth, each
Constraint must have a corresponding TouchRelation such that its selector
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functions evaluate to the latter’s object address and part coordinate. (Part
coordinates match if they lie within a defined tolerance.)

Some Constraint selector functions that search for objects must be eval-
uated with respect to the A.Sq environment as it was just before the user’s
action. This is accomplished by temporarily restoring Basil and CurrentObject
to their previous coordinates, without updating the display screen.

In effect, action matching is solving for constraints where only one
potential solution, the demonstrated action, can be checked. For instance,
Figure 3f matches Step5 of Figure 5: Both Operators are select; both
Parameters are nil; and Figure 3f’s Results include a TouchRelation corre-
sponding to the only Step5 Constraint, grasp ([L2 = Line041].[P9 = 0.5]).

A user action matches a ProgramStep with a constant position constraint if its
resultant CurrentPoint lies within several pixels of the constant. A step whose
constraint is an input position will match an action with no touch relations,
regardless of where its CurrentPoint lies.

The matcher can be parameterized to search forward or backward,
breadthfirst or depthfirst, starting from the graph’s entry point or from the
last accepted step, and to stop at the first match or to find all matches. For the
evaluation study (Section 5.1), it was configured to search backward
depthfirst from the last accepted step until the first match was found.

4.6. Variable Inducer

For Metamouse to apply the same task to different objects, as when
iterating over a set, it must use variables in constraint expressions. Variables
may be thought of as representing roles (Rich & Waters, 1988) such as “X: the
object in Basil’s grasp three steps before this one,” or “Y: a box lying above
Basil’s current location and not previously used in this operation.” Some
aspects of a role are implicit in a variable’s context (the action and touch
relations in which it was defined), but other criteria, such as whether the
object has been used before, are expressed by Selector functions. The variable
inducer creates placeholders for objects and parts in touch relations. These
are used by the constraint solver to instantiate a program step.

A Variable is local to a ProgramStep and often appears in several Constraint
records. Each has four components: Name, Type, Selector, and Bindings. For
instance, here is the variable for the box found by the sweepline in Figure 3g
(the second iteration of align boxes):

Name: BI

Type: box

Selector:  find-novel-object ({Box057], box, Upward)
Bindings: [Box061, Box057]
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Figure 13. Selector functions.

create (Object Type) This step creates (draws) the abject.
use-value-of (Var) The object appears as the binding of somz variable
Var.
find-named-part (PartName) Returns the edge coordinates of the named part.
Sfind-novel-object There is no other reference to the object in the
(PreviousBindings, current binding environment— It is encountered
ObjectType, Path) for the first time.

The Name, B1, is a globally scoped symbol. Type is one of {box, line, handle,
edge). Selector is the function to be called by the constraint solver (Section 4.8)
when a new value is required. Figure 13 lists the four functions currently in
use: The first two are common to both objects and parts; the third,
find-named-part, is a table-lookup from part names to edge coordinates (see
Figure 9); the fourth, find-novel-object, chooses a graphic of this variable’s type
that was not bound to it before (this prevents reediting an object that may
have been moved into the range of search). It has an optional argument, the
direction of search, in case the constraint classifier decides Path is relevant.

Bindings is a stack of the variable’s values—object addresses or part
coordinates. Previous bindings are remembered just in case Selector requires
them, as in the find-novel-object example just shown.

Algorithm. Given an ActionRecord, the variable inducer assigns each
object and part value in each TouchRelation to some local Variable. First,
ensure a 1:1 mapping of objects and Variables. If an object address is already
assigned to some Variable, use that Variable again. If a part coordinate and
its containing object are both already assigned, use the existing part Variable.
Otherwise create a new Variable; initialize its Name, Type, and Bindings;
and then find an appropriate Selector according to the rules given later.

If an object was drawn by the current action, its Selector is, create
(ObjectType). Otherwise, scan backward through the action trace. If the value
is the current binding of some variable X in a previous action, then the
Selector is, use-value-of (X). The default part Selector is find-named-part, where
the name is that corresponding to the part coordinate in the TouchRelation
(Figure 9). In the present implementation, it is assumed that a line is directed,
so the selector for an endpoint indicates whether it is the start or end of the
line. The default object selector is find-novel-object, which means that the
constraint solver will scan along a specified direction (path) for an object not
used previously as a binding for this variable.

4.7. Constraint Classifier

The key to generalizing an action is to distinguish those touch relations that
are intended from those that are incidental. We call the former constraints.
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Isolating constraints is, of necessity, a heuristic procedure. One approach is to
gather multiple examples and choose those touches that occur in every one —
This is similarity-based generalization. To minimize the number of examples
the user gives, we took another approach — explanation-based generalization.
The constraint classifier examines each TouchRelation of the current
ActionRecord and assigns it to one of eight levels of significance. The most
important touches are selected as constraints, and the rest are deemed
incidental. If insufficient constraint is found, the module may mark direction
of movement as an additional criterion or initiate a dialogue with the user
regarding implicit constraint (see Section 4.2 and Figures 3a-3b).

A ConstraintRecord has three parts: TouchRelation, Level, and Classification. For
instance, when the sweepline meets the first box (Figure 3d), the following
ConstraintRecords are added to the action (note that variables have been
inserted already):

grasp (L2.midpt) Level: Trivial Class: Incidental
touch (L2.7 : L1.?) Level: Sustained  Class: Incidental
touch (L2.? : BlI.bottom.left) Level: Weak2 Class: Constraint

touch (L2.? : Bl bottom.right) Level: Weak2 Class: Constraint
Path (Upward) is a Constraint

Because the grasp cannot be changed by drag-handle, it is not significant.
The fact that sweeplines and guidelines cross, just expressed as touch (L2.? :
L1.?), is sustained throughout the action is, hence, judged less significant
than contacts between sweepline and box, which result from the action. Only
the most significant touches are chosen as constraints. In addition, the
upward path is taken to be a constraint on the choice of B1.

Method. The selection of constraints from observed touch relations is a
three-stage process. First, each touch is classified according to whether the
action caused it, altered it, or had no effect on it. Second, the touch is assigned
a level of significance according to the type of effect and the number of
variables that take their value from a set of multiple options. Third, all touch
relations are ranked by significance, and those at the highest level are selected
as constraints.

1. Type of Effect. To determine how the action affected a given touch
relation, the classifier consults the decision table shown in Figure 14. A
Sustained touch holds true throughout the action: That is, object and part
identifiers remain the same, although part coordinates may change (as when
the sweepline slides along the guideline). An Effected touch occurs as a result
of the action (e.g., the touches between sweepline and box). A Trnivial touch
is “Sustained by definition,” that is, under no circumstances could it cease to
hold as a result of the action (e.g., grasping a handle as it is dragged). An
Unaffected touch must have held prior to this action, even though not sensed
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Figure 14. Decision table classifying ways a touch relation results from an
action.

Operator Locality of Both parts Relation is Type of
touch stationary changed effect
locate or grasp or — no Sustained
select direct yes Effected
indirect — - Unatfected
grasp — —_ Trivial
create-line or direct — no Sustained
create-box or yes Etfected
drag-handle indirect yes —_— Trivial
no no Sustained
yes Effected

beforehand (e.g., when Basil moves to grasp an object, any touch relations it
already has with others are Unaffected).

The decision rules check the Operator, locality of touch, whether both parts
remain stationary, and whether the touch relation persists. Locality of touch
distinguishes grasp (i.e., between Basil and CurrentObject), direct touch
(between Basil and some other object), and indirect touch (between
CurrentObject and some other). Direct touches occur when Basil locates the
start of a line or box at some point on another object, or moves to grasp at a
point where several objects intersect.

2. Level of Significance. To decide a touch’s level of significance, the
classifier consults the rules given in Figure 15. The only interesting rules
concern Effected touches, where the level of significance depends on the
number of free variables. A variable is free if its value is chosen from a set of
alternatives. A TouchRelation has at most three such variables: Object,,
Part,, and Part,. An object variable is free if its Selector scans the
DisplayList, as does find-novel-object for B1 in the previous examples. Given
the way TouchRelations are defined, this may be true of Object, but not of
Object,. A part variable is free if its Selector returns a range of parameter
values, as in find-named-part(?) for LI, which returns the edge 0. . . 1. A
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Figure 15. Decision table for the level of touch constraint.

Type of effect Free variables Level
Effected n=0 Determining
n>0 Weak n
Unaffected —_ Unaffected
Sustained — Sustained
Trivial n=0 Trivial
n>0 ERROR

contact between a vertex and an edge has one such degree of freedom; contact
between two edges has two.

In decreasing order, the levels of significance are: Determining; Weak 1,2,3;
Unaffected; Sustained; and Trivial. This ordering reflects the ability of a touch to
limit a set of positions derived by the constraint solver (Section 4.8).

A Determining touch is Effected by the action and involves no options—It
chooses a specific object, part, and point of contact for each item. Indeed, it
specifies exactly the position Basil must occupy after the action. In Figure 3e,
grasp (Bl.center) involves a predetermined object and a single point of
contact, hence it is Determining.

Weak touches are Effected by operators other than select and have one, two,
or three options. In the previous example, touch (L2.? : Bl.bottom.left)
results from drag-handle applied to L2, with options in the choice of box for
B1 and its point of contact along L2.

Unaffected and Sustained touches are assigned to levels of the same name
regardless of options. They are considered of low significance because
typically they do not limit constraint solutions as much as the higher levels.
Trivial touches can have no effect on constraint solutions.

3. Selection. Having assigned each touch to a level, the classifier then
selects all those at the highest level present as Constraints and marks the rest
Incidental. If there is no Determining constraint, the Path is made a Constraint
with the caveat that the solver may have to relax it. Should there be no touches
at a level higher than Unaffected, the classifier signals inadequate constraint.
In effect, the solver requires user intervention to produce a specific result, so
a default Constraint, “ask the user,” is adopted.

An Incidental touch that instantiates an object variable (i.e., a relation
containing a variable whose selector is find-novel-object) will be promoted to
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Figure 16. Intersection of solution zones for competing constraints.

Constraints: Intersection of zones
touch (A.?:B.7) satisfias both constraints
touch (A.?:C.7)

A

l ........

B --g— Zone of touch (A.? : C.?)

Zone of touch (A.? : B.7) —3»

a Constraint if some future action refers to that object. The classifier signals
the interface to display appropriate interaction devices for Constraints,
Incidental touches, and Paths, as described in Section 4.2.

Obviously, the classifier’s judgments cannot be guaranteed correct. For
instance, in the alignment task variant (Section 2.4), the grasping of a box is
governed by a Determining constraint, yet the Unaffected contacts between
a box and its tie-lines should be used to restrict the choice of box to one having
a tie-line at the left edge. This puints to the need for similarity-based
generalization (which is not used) and user intervention (which is supported).

4.8. Constraint Solver

Solving constraints is the process by which a predicted ProgramStep is
realized as an action with specific values for object and part variables and for
CurrentPoint (i.e., Basil's new location). Figure 16 shows what happens when
a Line A is to be moved so that any part of it touches both Lines B and C. The
solution zone is a convex two-dimensional area within which CurrentPoint
may lie, such that the stated touch relations hold. A set of constraints is solved
by intersecting their zones: This involves trying different combinations of
permitted values for variables (consistent across constraints) and intersecting
each region with the next until the result is empty (failure) or no constraints
remain (success). If no combination of variable values yields a nonempty
solution, the action is not performable (see Section 4.3). Otherwise the solver
chooses a point within the solution using additional criteria (see the follow-

ing).

Algorithm. The solver recursively processes a list of Constraints. The
initial zone is the entire drawing. For each Constraint C, it tries alternative
values of variables “owned” by C until it finds a combination for which C’s
zone overlaps both the area already computed and the solution to the
remaining Constraints given the current variable bindings. If no result is
nonempty, the solver returns to the previous Constraint and tries alternative
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bindings there. It reports failure if none remains for variables of the first
Constraint; otherwise it returns a nonempty solution zone.

A Constraint owns variables that occur in no earlier member of the list.
Only these may be re-bound; otherwise the previous zone would be invali-
dated. Combinations are generated, one at a time, by rebinding one variable
and reinitializing those for which no alternative values remain. Because the
first object in a touch relation is either Basil or CurrentObject, a Constraint
has at most two variables (object and part) to rebind. A variable is bound by
its Selector function, which chooses a value from the DisplayList (objects) or
object description (parts). As noted in Section 4.6, Selectors impose their own
constraints on variables; for instance, use-value-of (Var) permits only one
value. Find-novel-object uses a Path criterion to select only DisplayList items
whose location is in a certain half-plane relative to Basil.

For instance, in Figure 3g, Basil must solve the following pair of constraints
with the given Path criterion:

Path (Upward)
CI: touch (L2.? : B1.bottom.left)
C2: touch (L2.? : Bl.bottom.right)

When processing C1, the solver binds the variables it owns: L2, L2.?, B1,
and Bl .bottom.left. Because L2’s Selector is use-value-of (L2), its value is not
changed. Bl’s Selector is find-novel-object, so it is assigned the nearest
box along the vertical dimension (given by Path). The part variables are
given parameter ranges (0..1 and 3, respectively) according to definitions in
Figure 8. When processing C2, the solver can bind only one variable,
B1.bottom.right.

A Constraint’s zone is a polygon whose vertices are extreme positions that
Basil might occupy (e.g., see Figure 16). Consider the touch relation touch
(o;.p; - 05p,), where o, is Basil or CurrentObject. Each part p, can be
thought of as having one or two vertices (it is a handle or an edge). Basil is at
offset dx,, dy, from each vertex v of p,. For each vertex w of p,, the solution
zone has one or two vertices at (x,, + dx,, y, + dy,).

The solution zones for the example from Figure 3g are detailed in Figure
17. Basil is at L2.midpt; hence, if L = length (L2), then (dx,, dy;) = (—L/2,
0) and (dx,, dy;) = (L/2, 0). For C1, p, has one vertex Bl.bottom.left whose
coordinates are (x,;, y,,). Thus, C1’s zone is a line extending from (x;, + dx;,
Ip) to (xy + dx,, y,,). Similarly, C2’s zone is a line from (x,, + dx;, y,,) to (x,,
+ d-"z» .ybr)'

Because solution zones are (necessarily) convex polygons, a fast clipping
algorithm developed by Sutherland and Hodgman (1974) is used to intersect
them. Zones that are single points, line segments, or vertical or horizontal
lines are treated as special cases to further speed intersection calculations. In
Figure 17, where the zones of C1 and C2 are horizontal lines, their
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Figure 17. Calculating solutions for constraints between a sweepline and a box.

missibie positions missible positions
per ‘sfzr Ba}:l per for Ba‘:i,l
a. Solution zone for C1 b. Solution zone for C2
C1 Cc2
QG -~ - > S
P v v > R
max (P, Q) «~~~ -~ - - > min (R, S) permissible positions
for Basil

]

c. Intersection of solution zones

intersection is a line from (max (x,, + dx;, x;, + dx;), y;;) to (min (x,; + dx,,
Xy, + de)’ ]bl)-

Having processed all constraints, the solver chooses a single point within
their intersection as the final solution. If Path is a constraint, it chooses the
point nearest to but within the half-plane ahead of Basil’s present location.
Otherwise, it chooses the zone’s centroid. In Figure 17, Path is relevant and
the nearest point is directly above Basil, (CurrentPoint.x, y,,).

The constraint solver always terminates. The combinatorial component’s
complexity is proportional to the product of the number of variables and the
number of feasible values. The numerical component, invoked for each
iteration of the combinatorial one, is linear in the number of constraints.
Selector functions are linear in the number of possible values but in the worst
case could be invoked on each iteration of the combinatorial solver. This
suggests that potential values should be ordered (e.g., DisplayList objects
could be sorted along the search path) and that feasible values should be
memorized.

5. EVALUATION

We now establish that Metamouse actually learns procedures from example
execution traces, and we summarize the results of a study of the extent to
which inexperienced teachers understand its behavior. More detailed usability
studies will be carried out when our new implementation has been thoroughly
debugged.
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Figure 18. Performance of the learning system on three tasks.

Actions Performed

Size of

Task Trace Total Predict:Inputs %Accepted Rejected Program
Stove 1 10 0 0 0 i1
2 10 10:1 90 0 11
Sorting 1 32 18 56 1 21
2 38 38:2 100 0 22
Align boxes 1 20 8 40 0 13
2 24 24:2 100 0 13
. variant 3 32 18:2 56 3 28
4 32 32:2 100 0 28
. original 5 24 24:2 100 0 28

5.1. Performance of Tasks

Concepts learned by Metamouse cannot be judged correct or incorrect
because users demonstraie only enough to solve the problem at hand.
However, their coverage, robustness, and complexity may be examined
during coaching sessions. Coverage is measured as the ratio of actions correctly
predicted to the total number performed by both user and apprentice. The rate
of learning is measured as the increase in this ratio from one trace to the next,
or between iterations of a loop. Robustness is measured as the ratio of incorrect
predictions (i.e., ones rejected by the user) to total predictions. Complexity is
related to the number of edges (i.e., transitions between actions) in the
program graph.

Another important performance measure is actual running speed — specif-
ically, delays introduced by matching the user’s latest action and by solving
for constraints when predicting. Although we have not done detailed timings,
we find that, for relatively small tasks like those described here, the system
(running on a Sun SPARCStation) responds in real time.

To establish that Metamouse can infer constraints and procedures from
graphical constructions, it was taught the tasks described in Section 2 using
the same procedures. This study does not purport to show that typical users
of Metamouse would produce demonstrations with similar constructions—
although we believe this to be the case.

Each task was demonstrated once and then invoked several times on
different data; the demonstrations were free of incorrect or extraneous action.
It was found that the system quiik'y achieved competence and constructed
simple models. Figure 18 summarizes performance data. It compares the total
number of actions in each trace with the number correctly predicted by Basil,
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also shown as a percentage of the total. . he count of predictions includes the
number of user inputs, noted beside it. The number of predictions the user
rejected is also shown. The size of the program graphs is given as the number
of edges.

Stove. The stove editing task is a simple sequence of actions. No
predictions can be made during the first trace, as it contains no repeated
actions. All actions in the second trace are predicted correctly. One input
from the user to move the stove is required.

Sorting. For the first trace of the sorting task, four boxes were used; for
the second, five boxes were used. By inducing loops, the system was able to
perform 56% of the actions in this task the first time the user performed it.
Automation increased to 100% on the second trace, with two inputs to edit the
spacer.

Different construction tactics for sorting and spacing can be used: Their
effectiveness depends on exploiting Basil’s model of constraints (of which the
user is well informed) and remaining within the system’s inferencing limits (of
which the user is not). “Violations” of the latter condition can have unpre-
dictable results. For instance, suppose the sweepline is eliminated when
sorting. This makes no real difference because Basil orders the find-novel-
object selections by distance along the axis of Path. It would help the user
understand Basil better, however, if a sweepline were generated automatically
when using this selector.

A more serious misunderstanding occurs when the first box is placed to the
left of the spacing tool, with the remainder to the right. Basil predicts that the
second box should go to the left like the first. When the user rejects this, a
branch is formed that gives priority to putting the currently selected box at the
right. On the next invocation, Basil puts the first box at the right: When the
user rejects this, Basil tries an alternative prediction, which is accepted,
causing the priorities to be reversed again. Thus, on every invocation, Basil
handles the first two boxes incorrectly (unless the user accepts Basil’s putting
the first box at the right!). This problem arises from using a fixed number of
action matches (viz., one) to induce a loop. We have created a new learning
algorithm that is capable of extending the match context post hoc so that such
loops can be split; this will be incorporated into the next version of
Metamouse.

Aligning Boxes. Five traces of the alignment task were produced. The
first involved three boxes as in Section 2.3; the second was run on four boxes;
the third and fourth introduced and repeated the variant described in Section
2.4, and the final trace was a repetition of the second. Basil was able to learn
the variant and yet retain the ability to do the original task. In the first trace,




INFERRING GRAPHICAL PROCEDURES 83

the system predicted the second and third iterations of the loop, or 40% of the
work. In the second trace, it processed all four boxes, with two inputs for the
guideline’s endpoints. The third trace adapted the alignment procedure to the
task illustrated in Figure 4; 56% of its actions were predicted, and steps
demonstrated by the user introduced 15 new state transitions (see Figure 5).
During training, Basil made three faulty predictions. On the first iteration,
Basil went to the sweepline after editing the box; the user rejected this and
edited the tie-line. On the second iteration, when the sweepline touched two
boxes, Basil picked the one on the left, but the user rejected this and chose the
one on the right. After the final iteration, Basil predicted the end of the task,
but the user edited the vertical tie-lines.

Becau:: new actions are given priority over old ones, Basil was able to
repeat the variant in Trace four without error. On the other hand, because
actions are predicted only if their constraints can be solved, Basil was able to
repeat the original task in Trace five without making irrelevant predictions
concerning nonexistent tie-lines.

5.2. Evaluating Interaction

A critical aspect of a learning system is that the teacher must understand its
behavior (MacDonald & Witten, 1987). The suitability of the Basil metaphor
is measured as the ease with which teachers learn to predict what it will do.
This has been studied in two questionnaire-based experiments (reported in
more detail by Maulsby, James, & Witten, 1989). The first, a pilot study
without controls, was intended to establish the viability of a questionnaire.
The second introduced controls on the amount of prior knowledge subjects
were given regarding the metaphor and also measured correlations with
previous computing experience. The results of both experiments show that
even without live interaction Basil’s behavior is largely self-explanatory or
casily rationalized. They do not, however, irectly address the issue of
creating procedures by coaching Basil.

Pilot Study

In the pilot study, subjects were given a brief description of Basil (an earlier
version of Figure 10) and then asked to work through a self-study guide.
Typical questions depict a situation and ask the subject to predict Basil’s
response. Correct answers were provided after each page of questions to
simulate system feedback. A sample page is shown in Figure 19: The subject
is asked to state the discriminations he or she believes Basil would make
between touch relations. The experiment was run with eight volunteer
subjects who worked at their own pace.

If the metaphor were difficult to understand, one would expect numerous
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Figure 19. Sample page from questionnaire, with correct answers.

Basil pays attention to certain kinds of sensory feedback in order to
distinguish one situation from another. For each pair of frames below,
indicate whether or not Basil would distinguish the two situations.

é Same

O noitterent

Same

Different

0O 8,

Same

&\

Ditferent

Same

Different

errors in early questions, with at best a slow improvement. If completely
obvious, one would expect near-perfect performance from the beginning with
no degradation. The results show excellent performance initially, with
occasional mistakes and difficult spots after which near-perfect performance
is restored. It was concluded that the “superficial” aspects of the metaphor—
namely, the rules that distinguish parts of objects and types of direct touch—
are easily understood, whereas deeper aspects—the rules that govern action
matching and prediction— are less obvious but learnable.
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Controlled Study

A follow-up study —with students of architecture and industrial design
(giving 16 responses) and of first-year computer science (giving 20 responses)
as subjects —investigated two hypotheses: (a) that the amount of explanation
of Basil's behavior given prior to examples of it does not significantly affect
its predictability and (b) that prior experience with computer systems does not
significantly affect comprehension of the metaphor. The first hypothesis was
not disproven, indicating that the metaphor communicates essential aspects of
the system’s operation intuitively. The second was contradicted, but it was
found that the most useful types of experience were of graphical interfaces
and drawing programs, as opposed to computer programming and
spreadsheets.

Several controls were introduced. First, the introductory material was
varied. One version of the questionnaire contained the full description of
Basil (Figure 10). A less informative version came with a two-page worked
example of Basil learning a simple task. A minimal version provided a meagre
one-paragraph explanation of terms used in the questionnaire. This variation
had no significant impact on subjects’ overall scores or on scores for the first
page of the questionnaire. Second, the order of questions was varied to
simulate interaction rather than guided study; this was found to have no
significant effect on performance. Third, some subjects were given no answer
key (i.e., no feedback); this control group was eliminated due to lack of
response.

6. FUTURE WORK

A project that combines machine learning, constraint solving, and graph-
ical interaction affords many avenues for further research. Some of these
relate to improvements in and evaluations of Metamouse, others to the wider
problems of programming by demonstration. We consider the following
projects most important:

¢ Perform usability studies on Metamouse to determine whether novice
users can program tasks by demonstration using graphical construc-
tions.

¢ Perform ergonomic studies, measuring improvements in task execu-
tion time achieved through programming by demonstration.

® Develop a richer set of object selector functions and provide an
interface similar to that for constraints (marked by tacks), so that the
user can see and alter Basil’s hypotheses.
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¢ Implement the formation of conditional branches based on the
preconditions of actions.

® Augment the system with similarity-based learning of constraints and
selector functions to reduce spurious branching and increase predic-
tions.

e Extend A.Sq to include circles, polygons, and rotation; this will
necessitate changes to the constraint solver because solution zones will
no longer be restricted to convex polygons.

¢ Introduce orientation-dependent naming of object parts (e.g.,
leftmost end of line); use similarity-based learning and allow direct
user access to choose the appropriate selector.

® Induce certain common spatial relations (e.g., alignment along a
major axis) so that construction is not always required.

e If Metamouse infers a spatial relation or an ordering of selections
along a path, express it by generating a tool (like a sweepline) so that
users will learn from Basil how to make appropriate constructions.

® Investigate the use of a different modality (e.g., voice) for the
dialogue with Basil; this would enhance the separation in the user’s
mind between the application and the apprentice.

* Develop a cleaner and more elegant theory of constraints in a drawing
world, without sacrificing predictive power.

® Provide a clearer separation between the programming-by-example
method and the application domain, and test the method’s viability in
other domains.

® Develop a more layered approach to implementation that reduces its
complexity and general unwieldiness.

We are beginning to address several of these issues within the framework of
an “instructible system”—one that combines inference from examples with
direct instructions from the user.

7. CONCLUSIONS

The nature of Metamouse raises several important questions. The system
is designed to build a predictive model of human performance by conjec-
turing intentions behind isolated actions. It is illuminating to consider what
kinds of procedures Metamouse can and cannot learn. In a trivial sense, the
system is “Turing complete”. One can teach it to emulate any finite-state
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automation, including the control for a Turing machine, and give it access to
a graphical memory of linear structure and arbitrary size. The issue then
becomes one of teachability rather than learnability: what users find natural
to teach rather than what can in principle be taught.

Some tasks cannot be represented without creating unnatural objects to
support the computation—A good example is counted loops, where an
external graphical counter can in principle be constructed but is tedious to
create, update, and test. Other tasks may present teachers with an unreason-
able mental burden, for example, reference to higher order indirect touches
and demonstrating many different cases by iterating over each one in turn.
Further problems arise from the difficulty of structuring programs and the
fact that subprocedures are not supported. Perhaps it is reasonable to assume
an upper limit on the complexity of any program that it is worth teaching a
system that does not provide an externalized, written record.

Metamouse constructs nondeterministic procedures that use constraints
and, as a last resort, recency to disambiguate alternative branches at
run-time. This has striking benefits when debugging, extending, and reusing
procedures. It also finesses the problem of prematurely formed loops, formed
when a sequence includes matching subsequences that are long enough to
satisfy loop confirmation.

The preliminary human factors experiments on Metamouse’s usability may
lead to medifications of the user interface. In fact, subjects of the pilot
experiment had difficulty predicting Basil's sensory discriminations and
classification of constraints, and this led to a more telling graphical represen-
tation for Basil’s sensory feedback (Maulsby, Kittlitz, & Witten, 1989).

Metamouse demonstrates that it is indeed possible for users to create
graphical procedures by direct manipulation. Applications range from pro-
ducing complex, repetitive drawings, through constructively specifying fig-
ures governed by graphical constraint, to generating simple animated algo-
rithms for tasks such as sorting. Metamouse reveals its predictions as soon as
it can. This has three advantages. First, users reap early benefits when
performing repetitive operations. Second, they can correct errors as soon as
they occur Third, they develop confidence in their programs without ever
viewing any kind of listing. The principal shortcomings of the current system
are its limited repertoire of graphical objects and transformations, the lack of
a formal underpinning for the constraint model, and our limited experience
of how users react to the new experience of working with Metamouse.
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ABSTRACT

According to Fitts’ law, human movement can be modeled by analogy to
the transmission of information. Fitts’ popular model has been widely adopted
in numerous research areas, including kinematics, human factors, and
(recently) human-computer interaction (HCI). The present study provides a
historical and theoretical context for the model, including an analysis of
problems that have emerged through the systematic deviation of observations
from predictions. Refinements to the model are described, including a
formulation for the index of task difficulty that is claimed to be more
theoretically sound than Fitts’ original formulation. The model’s utility in
predicting the time to position a cursor and select a target is explored through
a review of six Fitts’ law studies employing devices such as the mouse,
trackball, joystick, touchpad, helmet-mounted sight, and eye tracker. An
analysis of the performance measures reveals tremendous inconsistencies,
making across-study comparisons difficult. Sources of experimental variation
are identified to reconcile these differences.

Author’s present address: I. Scott MacKenzie, Department of Computing and Infor-
mation Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada.




92 MACKENZIE

CONTENTS

1. INTRODUCTION
2. SUMMARY OF FITTS’ LAW
2.1. Information Theory Foundation
2.2. Equation by Parts
2.3. Physical Interpretation
2.4. Derivation From a Theory of Movement
3. DETAILED ANALYSIS
3.1. The Original Experiments
3.2. Problems Emerge
3.3. Variations on Fitts’ Law
3.4. Effective Target Width
3.5. Reanalysis of Fitts’ Data
3.6. Effective Target Amplitude
3.7. Targets and Angles
4. COMPETING MODELS
4.1. The Linear Speed-Accuracy Tradeoff
4.2. Power Functions
5. APPLICATIONS OF FITTS’ LAW
5.1. The Generality of Fitts’ Law
5.2. Review of Six Studies
Card, English, and Burr (1978)
Drury (1975)
Epps (1986)
Jagacinski and Monk (1985)
Kantowitz and Elvers (1988)
Ware and Mikaelian (1987)
5.3. Across-Study Comparison of Performance Measures
5.4. Sources of Variation
Device Differences
Task Differences
Selection Technique
Range of Conditions and Choice of Model
Approach Angle and Target Width
Error Handling
Learning Effects
5.5. Summary
6. CONCLUSIONS

1. INTRODUCTION

Fitts’ law is a model of human psychomotor behavior derived from
Shannon’s Theorem 17, a fundamental theorem of communication systems
(Fitts, 1954; Shannon & Weaver, 1949). The realization of movement in Fitts’
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model is analogous to the transmission of information. Movements are
assigned indices of difficulty (in units of bits), and in carrying out a movement
task the human motor system is said to transmit so many “bits of informa-
tion.” If the number of bits is divided by the time to move, then a rate of
transmission in “bits per second” can be ascertained.

In the decades since Fitts’ original publication, his relationship, or law, has
proven one of the most robust, highly cited, and widely adopted models to
emerge from experimental psychology. Psychomotor studies in diverse set-
tings—from under a microscope to under water —have consistently shown
high correlations between Fitts’ index of difficulty and the time to complete a
movement task. Kinematics and human factors are two fields particularly rich
in investigations of human performance using Fitts’ analogy.

In the relatively new discipline of HCI, there is also an interest in the
mathematical modeling and prediction of human performance using an
information-processing model. The starting point for Fitts’ law research in
HCI is the work of Card, English, and Burr (1978). In comparing four
devices for selecting text on a CRT display, the model provided good
performance predictions for the joystick and mouse. More than 80% of the
variation in movement time was accounted for by the regression equations. In
the subsequent Keystroke-Level Model for predicting user performance times
(Card, Moran, & Newell, i530), Fitts’ law was cited as an appropriate tool for
predicting pointing time but was omitted from the model in lieu of a constant.
The value ¢, = 1.10 s was derived from the Fitts’ law prediction equation in
Card et al. (1978) and served as a good approximation for pointing time over
the range of conditions employed. Similarly, the Model Human Processor of
Card, Moran, and Newell (1983, p. 26) comprises nine principles of
operation. These have been e focus of a substantial body of empirical
research leading to a psychological model of the human as an information
processor. As the performance model for the human motor processor, Fitts’
law, Principle P5, plays a prominent role in the Model Human Processor.

The need for a reliable prediction model of movement time in computer
input tasks is stronger today than ever before. Bit-mapped graphic displays
have all but replaced character-mapped displays, and office and desktop
metaphors are gaining in popularity over menus and command lines. Today’s
user interfaces often supplant cursor keys and function keys with mice and
pull-down menus. As the man-machine link gets more “direct,” speed-
accuracy models for human movement become ever closer to actions in
human-computer dialogues. Design models, such as the Keystroke-Level
Model, need to express the current range of movement activities in computer
input tasks. Fitts’ law can fill that need.

This study endeavors to critically assess the current state of Fitts' law and
to suggest ways in which future research and design may benefit from a
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rigorous and slightly corrected adaptation of this powerful model. Newell and
Card (1985) expanded on the role for theoretical models in the design of
human-computer interfaces:

Another way [for theory to participate] is through explicit computer
program tools for the design. The theory is embodied in the tool itseif,
so that when the designer uses the tool, the effect of the theory comes
through, whether he or she undersiands the theory or not. (p. 223)

Psychological theories and experiments, such as Fitts’ index of difficulty

. can shape the way a designer thinks about a problem. Analyses of
the key constraints of a problem can point the way to fertile parts of the
design space. Providing tools for thought is a more effective way of
getting human engineering into the interface than running experiment
comparisons between alternative designs. (p. 238)

Certainly though, conducting empirical experiments to validate models is
the starting point. Putting the theory into tools comes later. When properly
applied ar«! integrated into tools, however, theories may indeed elicit new
ways of thinking for designers.

The theory underlying Fitts’ relationship is sufficiently complex, and the
ideas presented here are so subtle that a thorough analysis of the model is
warranted before examining its applications. We begin with an overview of
the most common interpretation of the law and then review the original
experiments. Unlike many models that through statistical techniques yield
parameters and constants void of physical interpretation, a key feature of
Fitts’ law is the correspondence to physical properties underlying movement
tasks. An interpretation is offered for each term in the equation.

In the wake of the consistent departure of observations from predictions,
many follow-up studies questioned the validity of the model. An analysis of
Fitts’ original data highlights these problems, with a correction offered that
brings the model closer to the information theorem on which it is based. To
complete the picture, several competing models are presented and compared
with Fitts’ law. Other research revealing the generality of the model in diverse
and unusual settings is cited.

With this foundation, we undertake the task of connecting the theory to
practical problems in HCI. Six studies are surveyed where Fitts' law was
applied to input tasks using devices such as the mouse, trackball, joystick,
touchpad, helmet-mounted sight, and eye tracker. Unfortunately, the results
vary considerably, making across-study comparisons difficult. It is shown that
task differences, selection techniques, range of conditions employed, and
dealing with response variability (viz., errors) are among the major sources of
experimental variation. An understanding of these increases the potential for
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valid across-study comparisons and allows designers to benefit from a
substantial body of existing Fitts’ law research.

2. SUMMARY OF FITTS’ LAW

Following the work of Shannon, Wiener, and other information theorists in
the 1940s, information models of psychological processes emerged with great
fanfare in the 1950s (e.g., see Miller, 1953; Pierce, 1961, chap. 12). The
terms probability, redundancy, bits, noise, and channels entered the vocabulary of
experimental psychologists as they explored the latest technique of measuring
and modeling human behavior. Two surviving models are the Hick~Hyman
law for choice reaction time (Hick, 1952; Hyman, 1953) and Fitts’ law for the
channel capacity of the human motor system (Fitts, 1954; Fitts & Peterson,
1964).

2.1. Information Theory Foundation

Fitts’ idea was novel for two reasons: First, it suggested that the difficulty
of a task could be measured using the information metric bits; second, it
introduced the idea that, in carrying out a movement task, information is
transmitted through a channel —a human channel. With respect to electronic
communications systems, the concept of a channel is straightforward: A
signal is transmitted through a nonideal medium (such as copper or air) and
is perturbed by noise. The effect of the noise is to limit the information
capacity of the channel below its theoretical maximum. Shannon’s Theorem
17 expresses the effective information capacity C (in bits/s) of a communi-
cations channel of bandwidth B (in 1/s or Hz) as:

S+ N
C = Blog, N (1)

where S is the signal power and N is the noise power (Shannon & Weaver,
1949, pp. 100-103).

The notions of channel and channel capacity are not as straightforward in the
domain of human performance. The problem lies in the measurement of
human channel capacity. Although electronic communications systems
transmit information with specific and optimized codes, this is not true of
human channels. Human coding is ill-defined, personal, and often irrational
or unpredictable. Optimization is dynamic and intuitive. Cognitive strategies
emerge in everyday tasks through chunking, which is analogous to coding in
information theory —the mapping of a diverse pattern (or complex behavior)
into a simple pattern (or behavior). Neuromuscular coding emerges through
the interaction of nerve, muscle, and limb groups during the acquisition and -
repetition of skilled behavior. Difficulties in identifying and measuring
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cognitive and neuromuscular factors confound the measurement of the
human channel capacity, causing tremendous variation to surface in different
experiments seeking to investigate similar processes.

2.2. Equation by Parts

Fitts sought to establish the information capacity of the human motor
system. This capacity, which he called the index of performance (IP), is
analogous to channel capacity (C) in Shannon’s theorem. /P is calculated by
dividing a motor task’s index of difficulty (/D) by the movement time (MT)
to complete a motor task. Thus,

IP = ID/MT. ()

Equation 2 parallels Equation 1 directly, with /P matching C (in bits/s), ID
matching the log term (in bits), and M T matching 1/B (in seconds).

Fitts claimed that electronic signals are analogous to movement distances or
amplitudes (4) and that noise is analogous to the tolerance or width (W) of the
region within which a move terminates. Loosely based on Shannon’s loga-
rithmic expression, the following was offered as the index of difficulty for a
motor task:

ID = log,(24/W). 3)

Because A and W are both measures of distance, the ratio within the
logarithm is without units. The use of bits as the unit of task difficulty stems
from the somewhat arbitrary choice of base 2 for the logarithm. (Had base 10
been used, the units would be digtts.)

A useful variation of Equation 2 places MT on the left as the predicted
variable:

MT = ID/IP (4)

This relationship is tested by devising a series of movement tasks with ID
(viz., 4 and W) as the independent variable and MT as the dependent
variable. In an experimental setting, subjects move to and acquire targets of
width W at a distance A4 as quickly and accurately as possible. (Accurate, for the
moment, implies a small but consistent error rate.) Several levels are provided
for each of A and W, yielding a range of task difficulties.

The index of performance IP can be calculated directly using Equation 2 by
dividing a task’s index of difficulty by the observed movement time (averaged
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over a block of trials), or it can be determined by regressing M7 on ID. In the
latter case, the regression line equation is of the form:

MT = a + b ID, (5)

where a and b are regression coefficients. The reciprocal of the slope
coefficient, 1/b, corresponds to IPin Equation 4." The usual form of Fitts’ law
is Equation 5 expanded as follows:

MT = a + blog,(24/W). (6)

The factor 2 in the logarithm was added by Fitts as an arbitrary adjustment
to ensure that ID was greater than zero for the range of experimental
conditions employed in his experiments (Fitts, 1954, p. 388). The 2 increases
the index of difficulty by 1 bit for each task condition but does not affect the
MT-ID correlation or the slope of the regression line.?

2.3. Physical Interpretation

A common experimental method for model building is the stepwise
entering of parameters into a regression analysis on an ad hoc basis. Although
the goal of accounting for variation in observed behavior is met, there is a
cost:

over-parameterization . . . presents difficulties in terms of interpreting
the meaning of parameter variations. This subverts some of the
purposes of modeling, namely, providing succinct explanations of data
and providing assistance in designing experiments. (Rouse, 1980, p. 6)

This is not the case with Fitts’ law. A key feature of the model is the physical
interpretation afforded by the parameters and empirically determined con-
stants in the prediction equation.

As measures of magnitude, target amplitude and target width have
straightforward interpretations: Big targets at close range are acquired faster
than small targets at a distance. But the model predicts movement time as a
function of a task’s index of difficulty —the logarithm of the ratio of target
amplitude to target width. This is a very convenient relationship. From
Equation 3, task difficulty (ID) increases by 1 bit if target distance is doubled

' Throughout this article, the following units are consistently used: bits/s for IP, ms/bit for 3,
and ms for MT and a.

2 The 2 may also be explained by expressing the log term as log,(4/% W), where 4 is the distance
moved and %W is the size of the error band on each side of target center.




98 MACKENZIE

or if the size is halved. Thus, ID provides a useful, single measure of the
combined effect of two physical properties of movement tasks.

The intercept (a) and slope (&) coefficients in Equation 6 are empirically
determined constants. Ideally the intercept is zero, suggesting that a task of
zero difficulty takes 0 s; however, linear regression usually produces a nonzero
value. Although the magnitude of the intercept is viewed by some as an
indication of the model’s accuracy, a substantial positive intercept indicates
the presence of an additive factor unrelated to the index of difficulty. Target
acquisition tasks on computers are particularly sensitive to additive factors.
The select operation, which typically follows pointing, may entail a button
push, the application of pressure, dwell time, and so on. These responses
should have an additive effect, contributing to the intercept of the regression
line but not to the slope.

Fitts’ index of performance is the reciprocal of the regression line slope and
carries the units bits per second. In executing a movement task, ID is the
number of bits of information transmitted, and IP is the rate of transmission.
Although it is glossed over in many accounts of the model, Fitts’ thesis was
that IP is constant across a range of values for ID. It follows that the
relationship between MT and ID is linear. His experiments provided strong
evidence to support this claim, as has a large body of subsequent research.

Many studies have sought to establish the human rate of information
processing in diverse settings. Langolf, Chaffin, and Foulke (1976) tested
different limb groups and found that IP decreased as the limb changed from
the finger to the wrist to the arm. This implies that large, cumbersome limbs
are more sensitive to changes in /D than small dexterous limbs. There is a
vital role for this sort of knowledge in the design of high-performance
man-machine interfaces.

2.4. Derivation From a Theory of Movement

Fitts deduced his model by analogy. Trying to explain why the analogy
works so well and to justify the model from a low-level account of the
underlying phenomena has challenged psychomotor researchers ever since.
Devising a theory and providing a derivation is not so simple, however. Pew
and Baron (1983, p. 664) claimed that:

There is no useful distinction between models and theories. We assert
that there is a continuum along which models vary that has loose verbal
analogy and metaphor at one end and closed-form mathematical
equations at the other, and that most models lie somewhere in-between.

Fitts’ law may be placed in this continuum. As a mathematical expression, it
emerged from the rigors of probability theory, yet when applied to
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psychomotor behavior it becomes a metaphor. Derivations of the law,
therefore, must build on assumptions—assumptions on the perceptual,
psychological, and physiological processes underlying human movement. A
derivation explains a model well if it requires only a few simple assumptions
that can be validated in the laboratory.

The most accepted derivation originates from the deterministic iterative-
corrections model, originally offered by Crossman and Goodeve (1963/1983) and
developed subsequently by others (e.g., Keele, 1968; Langolf et al., 1976).
The derivation builds on the underlying assumption that a complete move is
realized through iterations of feedback-guided corrective submovements. A
move is assumed to take n submovements, each taking a constant time of ¢
seconds to complete. It follows that the time to complete a move is nt seconds.
A constant of proportionality (p) is introduced such that for each
submovement the distance covered is 1 — p times the distance remaining.

Based on these assumptions, the derivation proceeds as follows. After the
first submovement in a move of total distance 4, the distance moved is (1 —
p)A4 and the distance remaining is pA. After the second submovement, the
distance moved is (1 — p)pA and the distance remaining is ppA or p°A. After
n submovements, the distance remaining is p"A. Completing a move within
the target implies that the distance remaining is < %W. Setting p"4 = LW
and solving for n yields &' log,(24/W), where b’ is the constant — 1/log,p
(which must be > 1 because 0 < p < 1). The time to complete a move is MT
= nt = blogy(24/W), where b is the positive constant 5't. This is the same as
Fitts’ law (Equation 6) except the intercept, g, is missing. The intercept may
be accounted for by noting that the first move should take less than ¢ (by a
constant a) because the time to decide how far to move initially occurs before
a move begins (Keele, 1968).

One way of testing the derivation is to fix values for ¢ and p, and calculate
b. Estimates for ¢, the time to process visual feedback, are in the range of 135
ms to 290 ms (Beggs & Howarth, 1970; Carlton, 1981; Crossman & Goodeve,
1963/1983; Keele & Posner, 1968). The proportional error constant, p, is
between .04 and .07 (Langolf et al., 1976; Meyer, Abrams, Kornblum,
Wright, & Smith, 1988; Pew, 1974; Schmidt, 1988, p. 275; Vince, 1948).
Using ¢t = 290 ms and p = .07 yields b = —t/log,p = 75.6 ms/bit or IP =
1/6 = 13.2 bits/s, a value close to that found by Fitts (Fitts & Peterson, 1964).

Despite the appealing simplicity of the deterministic iterative-corrections
model, the underlying assumptions are suspect. Langolf et al. (1976) found
that some movements have only one correction despite the prediction of
several corrective submovements when A/W is appreciable. Jagacinski,
Repperger, Moran, Ward, and Glass (1980) questioned the hypothesis of
constant-duration submovements, having found considerable variation in the
duration of the initial submovement. Also, the model is completely determin-
istic and cannot explain why subjects sometime miss a target and commit an
error (Meyer, Smith, Kornblum, Abrams, & Wright, 1990).
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Figure 1.  Fitts’ reciprocal tapping paradigm (after Fitts, 1954).
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So, despite being robust and highly replicable, Fitts’ law remains an
analogy waiting for a theory. Providing a reasonable account of the law
through a theory of human movement—rather than a theory of informa-
tion —remains a research goal.

3. DETAILED ANALYSIS

Fitts’ original experimen:s provide the basis for a detailed examination of
the model’s utility, shortcoming and universality. Following an analysis of
Fitts’ work, problems and weaknesses in the model are examined in view of a
substantial body of follow-up research.

3.1. The Original Experiments

The original investigation (Fitts, 1954) involved four experiments: two
reciprocal tapping tasks (1-oz stylus and 1-1b stylus), a disc transfer task, and
a pin transfer task. In the tapping experiments, subjects moved a stylus back
and forth between two plates as quickly as possible and tapped the plates at
their centers (see Figure 1). This experimental arrangement is commonly
calied the “Fitts’ paradigm.”

Because summary data were published in Fitts’ original report, and because
this work is so vital to our investigation, these experiments are analyzed in
detail to develop (and correct) some of the concepts in the information-
processing analogy. Figure 2 reproduces the data from the 1-oz tapping
experiment, with one column of additional data that is discussed soon.

Target width and target amplitude varied across four levels, resulting in
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Figure 2. Data from Fitts’ (1954) reciprocal task experiment with 1-oz stylus.
An extra column shows the effective target width (W,) after adjusting W for the
percentage errors.

w W, A D MT Errors IP®
(in.) (in.) (in.) (Bits) (ms) (%) (Bits/s)
0.25 0.243 2 4 392 3.35 10.20
0.25 0.244 4 5 484 3.41 10.33
0.25 0.235 8 6 580 2.78 10.34
0.25 0.247 16 7 731 3.65 9.58
0.50 0.444 2 3 281 1.99 10.68
0.50 0.468 4 4 372 2.72 10.75
0.50 0.446 8 5 469 2.05 10.66
0.50 0.468 16 6 595 2.73 10.08
1.00 0.725 2 2 212 0.44 9.43
1.00 0.812 4 3 260 1.09 11.54
1.00 0.914 8 4 357 2.38 11.20
1.00 0.832 16 5 481 1.30 10.40
2.00 1.020 2 1 180 0.00 5.56
2.00 1.233 4 2 203 0.08 9.85
2.00 1.576 8 3 279 0.87 10.75
2.00 1.519 16 4 388 0.65 10.31
M 392 1.84 10.10
SD 157 1.22 1.33

*Data added (see text). °IP = ID / MT.

IDs of 1 to 7 bits. Mean MTs ranged from 180 ms to 731 ms, with each mean
derived from more than 600 observations. In assuming an intercept of zero
(see Equation 4), Fitts calculated IP directly by dividing ID by MT for each
experimental condition. A quick glance at Figure 2 shows the strong evidence
for the thesis that the rate of information processing is constant across a range
of task difficulties. The mean value of IP = 10.10 bits/s (SD = 1.33 bits/s)
is purportedly the information-processing rate of the human motor system.

Although Fitts did not perform correlation or regression analyses on his
1954 data, others have. Correlating MT with ID yields r = .9831 (p < .001).
It is noteworthy of the model in general that correlations above .9000
consistently emerge. Regressing MT on ID results in the following prediction
equation for MT (in ms):

MT = 12.8 + 94.7 ID. )

Calculating IP from the reciprocal of the slope yields an information-
processing rate of 10.6 bits/s. This rate is slightly higher than that obtained
through direct calculation because it is derived from a least-squares regression
equation with a positive intercept. When IP is calculated directly, the linear
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relationship takes on an intercept of zero. A positive intercept reduces the
slope of the line, thus increasing /P. Although some researchers cite values of
IP calculated directly (notably Fitts, 1954), most use the statistical technique
of linear regression and provide a value for IP (the reciprocal of the slope) and
an intercept. See Sugden (1980) or Salmoni and Mcllwain (1979) for further
discussions on the merits of each technique of calculating IP.

3.2. Problems Emerge

Despite the high correlation between ID and the observed mean MT,
problems have been noted. Scatter plots often reveal an upward curvature of
MT away from the regression line for low values of ID (see Figure 3). This
systematic departure of observations from predictions was first pointed out by
Crossman in 1957 (Welford, 1960) and has been observed in other studies
since (Buck, 1986; Crossman & Goodeve, 1963/1983; Drury, 1975; Klapp,
1975; Langolf et al., 1976; Meyer et al., 1988; Meyer et al., 1990; Wallace,
Newell, & Wade, 1978).

The failure of the model when ID is small is also evident in Figure 2. The
IP rating of 5.56 bits/s for ID = 1 bit is 3.4 $Ds from the mean value of 10.10
bits/s.

Another problem stems from the relative contributions of 4 and W in the
prediction equation. Accordingly, the effect should be equal but inverse. A
doubling of the target amplitude adds 1 bit to the index of difficulty and
increases the predicted movement time. The same effect is predicted from
Equation 6 if target width is halved. In an analysis of Fitts' (1954) four
experiments, M. R. Sheridan (1979) showed that reductions in target width
cause a disproportionate increase in movement time when compared to
similar increases in target amplitude. Others have also independently noted
this disparity (Keele, 1973, p. 112; Meyer et al., 1988; Welford, Norris, &
Shock, 1969). It is also evident in the scatter plots in some reports, although
not noted by the investigators (Buck, 1986; Jagacinski & Monk, 1985;
Jagacinski, Repperger, Ward, & Moran, 1980).

An error-rate analysis may also reveal the inequitable contributions of 4
and W. Wade, Newell, and Wallace (1978) found a significant main effect
between error rate and target width, F (2, 40) = 16.60, p < .01, with errors
increasing as target width decreased but no main effect between error rate and
target amplitude. A similar observation was made by Card et al. (1978).

By no means is there unanimity on the point just raised. When ID is less
than around 3 bits, movements are brief and feedback mechanisms yield to
impulse-driven ballistic control. The disparity may be just the opposite under
these conditions. Gan and Hoffmann (1988) found that when ID is small MT
is strongly dependent on movement amplitudes, with no significant effects
from target width.
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Figure 3. Scatter plot of movement time versus index of difficulty. Sixteen
combinations of A and W were employed with IDs ranging from 1 to 7 bits (after
Fitts, 1954).
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Fitts’ analogy has proven itself in many settings, but, like all models,
limitations and inaccuracies emerge under extremes of conditions or when the
grain of analysis is fine.

3.3. Variations on Fitts’ Law

In an effort to improve the data-to-model fit, numerous researchers have
proposed variations on Fitts’ relationship or have introduced new models
derived from different principles. Welford’s (1960; 1968, p. 147) variation is
the most widely adopted, and it commonly appears in two forms:
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MT = a + blog,(A/W + 0.5) (8)

or

MT =a + blog, 4 + 0.5W
— ©)

The latter form is strikingly similar to Shannon’s original theorem (cf.
Equation 1). Many researchers, including Fitts, have reported higher corre-
lations between MT and ID using Welford’s formulation (Beggs, Graham,
Monk, Shaw, & Howarth, 1972; Drury, 1975; Fitts & Peterson, 1964; B. A.
Kerr & Langolf, 1977; Knight & Dagnall, 1967; Kvalseth, 1980). Although
Fitts’ original formulation (Equation 6) is still the most frequently used, many
researchers (most notably in the present context, Card et al., 1978) prefer
Equation 8.

Recently it was shown that Fitts deduced his relationship citing an
approximation of Shannon’s theorem originally introduced with the caution
that it is useful only if the signal-to-noise ratio is large (Fitts, 1954, p. 388;
Goldman, 1953, p. 157; MacKenzie, 1989). The signal-to-noise ratio in
Shannon’s theorem corresponds to the ratio of target amplitude to target
width in Fitts’ analogy. As evident in Figure 2, Fitts’ experiments extended the
A: W ratio as low as 1:1! The variation of Fitts’ law suggested by direct analogy
with Shannon’s information theorem is:

MT = a + blogy(A/W + 1) (10)

or the alternate form

T = blog, 4 + W
M a + og2__W_‘ (11

The difference between Equation 10 and Equation 6 (Fitts’ law) is illustrated
by comparing changes in the logarithm term (ID) as A approaches zero with
W held constant (see Figure 4). It is noteworthy of Equation 10 that the
logarithm cannot be negative.’

Obviously, a negative rating for task difficulty presents a serious theoretical
problem. It is a minor consolation that this can only occur with Fitts’
expression when the targets overlap, that is, when 4 < W/2. Although such
conditions may seem unreasonable, the possibility has been investigated
before (Schmidt, 1988, p. 271; Welford, 1968, p. 145) and can occur when
output measures are adjusted to reflect the variance in subjects’ responses
(using a technique described shortly). Regardless, researchers have actually

? Welford’s formulation produces a similar curve to Equation 10 except that ID approaches — 1
bit as A approaches zero.
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Figure 4. Comparison of Fitts’ index of difficulty and an ID based on Shannon’s
Theorem 17. W is held constant at 1 unit as 4 approaches zero.
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reported on experimental conditions with a negative ID (e.g., Card et al.,
1978; Crossman & Goodeve, 1963/1983; Gillan, Holden, Adam, Rudisill, &
Magee, 1990; Ware & Mikaelian, 1987).

The practical consequences of using Equation 10 in lieu of Fitts’' or
Welford’s equation are probably slight and are likely to surface only in
experimental setiings with IDs extending under approximately 3 bits, as
suggested from Figure 4. Nevertheless, the theoretical implications of Equa-
tion 10 are considerable. First, the idea that similar changes in target
amplitude and target width should effect a similar but inverse change in
movement time as suggested in Equation 6 does not follow in Equation 10.

Also, the sound theoretical premise for Equation 10 casts doubt on the
rationale for a popular and mathematically correct transformation of Fitts’
law, which separates A and W:

MT = a + b,log,A — b, log, W. (12)
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Welford (1968, p. 156) suggested that b,log,4 may correspond to an initial
open-loop impulse toward a target and that bylog,W may correspond to a
feedback-guided final adjustment as a move terminates. Numerous re-
searchers have used or analyzed Equation 12 with good results (Bainbridge &
Sanders, 1972; Gan & Hoffmann, 1988; Jagacinski, Repperger, Moran,
Ward, & Glass, 1980; Jagacinski, Repperger, Ward, & Moran, 1980; Kay,
1960; R. Kerr, 1978; M. R. Sheridan, 1979; Welford et al., 1969; Zelaznik,
Mone, McCabe, & Thaman, 1988). In multiple correlation analyses, Equa-
tion 12 always yields a higher R than the single factor r obtained using
Equation 6 (because of the extra degree of freedom); however, the model
ceases to have an information-theoretic premise because similar recasting is
not possible using Equation 10, which directly mimics Shannon’s original
theorem. For example, from Equation 12, What is ID? and What is IP?

Finally, derivations of Fitts’ law, such as that provided by Crossman and
Goodeve (1963/1983), cannot accommodate Equation 10 without introducing
further assumptions. Thus, the Shannon formulation addresses several
theoretical issues and offers slightly better prediction power than Fitts’ or
Welford’s formulation.

3.4. Effective Target Width

Of greater practical importance is a technique to adjust output measures to
bring the model in line with the underlying principles. The technique calls for
normalizing target width to reflect what a subject actually did (output
condition), rather than what was expected (input condition). Thus, at the
model-building stage, W becomes a dependent variable.

The output or “effective” target width (W,) is derived from the distribution
of “hits” (see Welford, 1968, pp. 147-148). This adjustment lies at the very
heart of the information-theoretic metaphor —that movement amplitudes are
analogous to “signals” and that endpoint variability (viz., target width) is
analogous to “noise.” In fact, the information theorem underlying Fitts’ law
assumes that the signal is “perturbed by white thermal noise” (Shannon &
Weaver, 1949, p. 100). The analogous requirement in motor tasks is a
Gaussian or normal distribution of hits—a property observed by numerous
researchers (e.g., Crossman & Goodeve, 1963/1983; Fitts, 1954; Fitts &
Radford, 1966; Welford, 1968, p. 154; Welford et al., 1969; Woodworth,
1899).

The experimental implication of normalizing output measures is illustrated
as follows. The entropy, or information, in a normal distribution is, log,
(V2 x € 0) = log,(4.133 0), where g is the standard deviation in the unit of
measurement. Splitting the constant 4.133 into a pair of z scores for the
unit-normal curve (i.e., ¢ = 1), one finds that 96% of the total area is
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Figure 5. Method of adjusting target width based on the distribution of
endpoint courdinates. When 4% errors occur, the clfective target width, W, =
W. When less than 4% errors occur, W, < W.

bounded by —2.066 < z < +2.066. In other words, a condition that target
width is analogous to noise is that the distribution is normal with 96 % of the
hits falling within the target and 4% of the hits missing the target (see Figure
5a). When an error rate other than 4% is observed, target width can be
adjusted to form the effective target width in keeping with the underlying
theory. This is a crucial point that we dwell on in more detail later.

There are two methods for determining the effective target width. If the
standard deviation of the endpoint coordinates is known, just multiply SD by
4.133 to get W,. When percentage errors are known, the method is trickier
and requires a table of z scores for areas under the unit-normal curve. The
method is: If n percentage errors are observed for a particular 4~ W condition,
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determine z such that £z contains 100 — n percent of the area under the
unit-normal curve. Multiply W by 2.065/z to get W,. For example, if 2%
errors were recorded on a block of trials when tapping or selecting a 5-cm wide
target, then W, = 2.066/z X W = 2.066/2.326 X 5 = 4.45 c¢m (scc Figure
5b).

Experiments following this approach may find the variaiion in IP reduced
because, typically, subjects that take longer are more accurate and demon-
strate less endpoint variability. Reduced variability decreases the effective
target width and therefore increases the effective index of difficulty (see
Equation 3). On the whole, an increase in MT is compensated for by an
increase in the effective /D, and this tends to lessen the variability in IP (see
Equation 2).

This technique is not new, yet it has been largely ignored in the published
bodv of Fitts iaw research that could have benefited from it.* There are
several possible reasons for the lack of use of this technique. First, the method
is tricky and its derivation from information-theoretic principles is compli-
cated (e.g., see Reza, 1961, pp. 278-282). Second, the endpoint coordinate
inust be reco ded for each trial in order to calculate W, from the standard
deviation. This is feasible using a computer for data acquisition and statistical
software for analysis, but manu - .neasurement and clata entry are extremely
awkward.’

inaccuracy may enter when adjustments use the percentage errors because
the extreme tails of the unit-normal distribution are involved. It is necessary
to use z scores with at least three decimal places of accuracy for the factoring
ratio (which is multiplied by W to yield W,). Manual look-up methods are
prone to precision errors. Furthermore, some of the easier experimental
conditions may have error rates too low to reveal the true distribution of hits.
The technique cannot accommodate “perfect performance” For example, as
shown in Figure 2, 0.00% errors occurred when 4 = W = 2 in., which seems
reasonable because the target edges were touching. This observation suggests
a large adjustment because the distribution is very narrow (in comparison to
the target width over which the hits should have been distributed - with 4%
errors!). A pragmatic approach in this case is to assume an error rate of
0.0049% (which rounds to 0.00%) at worst and proceed to make the
adjustment.

Introducing a post hoc adjustment on target width before the regression

* The study by MacKenzie, Sellen, and Buxton (1991) is an exception. Fitts’ law prediction
equations were derived for the mouse, trackball, and tablet-with-stylus in both pointing and
dragging ‘asks. The equations were derived using the Shannon formulation for ID and the
effective .arget width, W,.

* Despite being more cumbersome, the standard deviation method is better than the discrete
error method because more behavioral characteristics can be discerned, such as the predominance
of overshoots versus undershoots or the presence of outliers.
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analysis (or maintaining a consistent error rate of around 4 %) is important to
maintain the information-theoretic analogy. There is a tacit assumption in
Fitts’ law that subjects, although instructed to move “as quickly and accurately
as possible,” balance the demands of tasks to meet the spatial constraint that
96% of the hits fall within the target. When this condition is not met, an
adjustment to target width should be introduced. Furthermore, if subjects
slow down and place undue emphasis on accuracy, the task changes; the
constraints become temporal, and the prediction power of the model falls off
(Meyer et al., 1988). In summary, Fitts’ law is a model for rapid, aimed
movements, and the presence of a nominal yet consistent error rate in
subjects’ behavior is assumed and arguably vital.

3.5. Reanalysis of Fitts’ Data

The technique for adjusting target width based on percentage errors was
applied to the data in Fitts’ tapping experiments in determining the effective
target width. The adjusted values, W, are shown in Figure 2 for the 1-o0z
tapping experiment. The correlation between ID and MT for the first
experiment using Fitts’ model without the adjustments is high (- = .9831, p
< .001), as previously noted, but higher when ID is recalculated using, W, (r
= .9904, p < .001), and even higher using W, and the Shannon formulation
(r = .9937, p < .001).% As evident in Figure 6, the trend is similar for the
other experiments.’

A scatter plot of MT versus ID, where ID = log,(A/W, + 1) from Equation
10, shows a coalescing of points about the regression line (cf. Figures 3 and
7). Note that the range of IDs is narrower using adjusted measures. This is
due to the 1-bit decrease when ID is greater than about 2 bits (see Figure 4)
and the general increase in ID for “easy” tasks because of the narrow
distribution of hits.

Although the regression equation obtained using Fitts’ expression is
noteworthy for providing the intercept closest to the origin for all four
experiments (see Figure 6), the standard error is the highest for all experi-
ments. In general, a large intercept is due to the presence of factors that are
unaccounted for, such as a “button push” or other antagonistic muscle activity
at the beginning or ending of a task (Keele, 1968; Meyer, Smith, & Wright,

© A two-tailed ¢ test shows that the difference between the Fitts and Shannon correlations (r =
.9904 vs. r = .9937; both calculated using W) is statistically significant (¢ = 2.20,df = 13, p <
.05; see MacKenzie, 1989). Welford’s formulation consistently yields correlations between those
using the Fitts and Shannon formulations.

7 The differences between the correlations in the disc and pin transfer experiments are not
statistically significant; however, these experiments used IDs of 4 to 10 bits and 3 to 10 bits,
respectively. As demonstrated in Figure 4, the Fitts and Shannon formulations differ signifi-
cantly only when IDs extend under around 3 bits.
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Figure 6. Reanalysis of data from Fitts’ (1954) experiments. For each experi-
mental condition, the trend is for the correlation to increase and the standard
error to decrease when target width is adjusted for percentage errors and ID is
calculated using the Shannon formulation. Target width could not be adjusted for
the disc and pin transfer experiments because errors could not occur. Analysis
was conducted using SPSS* Release 3.1 (1990).

Regression Coefficient

1P
Model  Equation Target Width 7  Intercept (SE)° Slope (SE)® (Bits/s)
1-0z Stylus
Fitts 6 Unadjusted (W) .9831 12.8 (20.3) 94.7 (4.7) 10.6
Fius 6 Adjusted (W,) .9904 -73.2 (18.0) 108.9 (4.0) 9.2
Shannon 10 Adjusted (W,) 9937 -31.4 (13.4) 122.0 (3.6) 8.2
1-1b Stylus
Fitts 6 Unadjusted (W) .9796 -6.2 (24.7) 104.8 (5.7) 9.5
Fitts 6 Adjusted (W) .9882 -118.0 (22.8) 124.0 (5.1) 8.1
Shannon 10 Adjusted (W.) .9925 -69.8 (16.6) 138.8 (4.5) 7.2
Disc Transfer
Fitts 6 Unadjusted (W) .9186  150.0 (74.6) 90.4 (10.4) 11.1
Shannon 10 Unadjusted (W) .9195  223.5 (66.0) 92.6 (10.6) 10.8
Pin Transfer
Fitts 6 Unadjusted (W) .9432 22.3 (48.2) 86.1 (7.1) 11.6

Shannon 10 Unadjusted (W) .9452 84.4 (42.4) 89.4 (7.3) 11.2

*p < .001. ®Standard error.

1982). In follow-up applications, a negative prediction is unlikely because task
difficulties well under 1 bit would be required. The general effect of the
adjustments, as shown in Figure 7, is to increase low values of ID, thus
further decreasing the likelihood of a negative prediction for MT.

Although it is interesting that /P decreases for each of the changes
introduced, the magnitude of IP is less relevant to the present discussion than
the overall accuracy of the model as determined by the statistical measures of
correlation and standard error. The rate of /P = 8.2 bits/s for the first
experiment is a full 2.4 bits/s lower than that found using Fitts’ model;
however, low rates often emerge, sometimes under 5 bits/s (e.g., Epps, 1986;
Jagacinski, Repperger, Ward, & Moran, 1980; Kantowitz & Elvers, 1988;
Kvalseth, 1977).

To conclude, the trend of increasing correlation and decreasing standard
error progressing down the columns in Figure 6 within each experiment
suggests that the adjustments introduced improve the model’s accuracy.
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Figure 7. Scatter plot of MT versus ID. The data are from Fitts (1954); however,
ID has been recalculated using W, and a logarithmic expression based on
Shannon’s information theorem (see Equation 10).
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3.6. Effective Target Amplitude

It follows from the preceding discussion that an adjustment may also be in
order to reflect the actual distance moved, resulting in an “effective” target
amplitude, 4.. The possibility seems strongest that 4, < 4, particularly when
A:W is small, but many factors are at work such as the type of input device
and the control-display (CD) gain setting. The data in Fitts’ report do not
permit an investigation of this point; however, it was observed that, of the two
possibilities, undershoot errors were more common (Fitts, 1954, p. 385). This
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Figure 8. The changing roles of target width and target height as the approach
angle changes.
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trend has also been noted in other studies (Glencross & Barrett, 1983; P. A.
Hancock & Newell, 1985, p. 159; Langolf et al., 1976; Wright & Meyer,
1983).

The implications of this are subtle and may be of little practical conse-
quence. If a prediction equation is derived using adjusted amplitude measures
(reflecting what subjects actually did) and then is applied in subsequent
designs, there may be a systematic departure of performance from predic-
tions. More errors may occur than predicted because output responses may
not be a normally distributed reflection of input stimulus but may be skewed
inward.

3.7. Targets and Angles

There are two aspects of dimensionality in Fitts’ law tasks: the shape of
targets and the direction of movement. When movements are limited to one
dimension (e.g., back and forth) and both target height (H) and target width
are varied, there is evidence that target height has only a slight main effect on
movement time (Kvalseth, 1977; Salmoni, 1983; Welford, 1968, p. 149).
Schmidt (1988, p. 278) noted that horizontal motion toward a target resuits in
an elliptical pattern of hits, with the long axis on the line of approach.®

When the shape of the target and the direction of movement vary, the
situation is confounded. For rectangular targets in two-dimensional (2D)
positioning tasks, as the approach angle changes from 0° to 90° (relative to
the horizontal axis), the roles of target width and target height reverse (see
Figure 8).

Varying the direction of approach raises the question, What is target
width? At the model-building stage, the issue is avoided somewhat by using
W,, as described earlier. Most likely, W, should be derived from the endpoint
variability in two dimensions, calculated in Cartesian coordinates from

® The reader is invited to verify this with a felt-tipped pen and a sheet of paper. Tapping back
and forth between two rectangular targets (as in Figure 1) will produce two patterns as described.
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Figure 9. The relationship between target width and approach angle. A possible
substitute for target width when the approach angle varies is the distance through
the target along the approach vector (W").
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Vx% + »°. Although this idea awaits empirical testing, it can extend to
three-dimensional (3D) movements as well.

When a derived model is used for prediction in 2D movement tasks, the
problem of target width must be addressed directly: What value for W should
be used in calculating ID? There are several possibilities. Considering first
only rectangular targets, it is probably wrong to consistently use the
horizontal extent of a target for W, because a wide, short target approached
from above or below at close range will yield a negative ID (if Fitts’ or
Welford’s formulation is used). This situation is common in text-selection
tasks where wide, short targets (viz., words) are the norm. The text-selection
experiments by Card et al. (1978) and Gillan et al. (1990) both cited
experimental conditions yielding negative IDs.

Research on potential substitutes for target width is scarce. Possibilities
include H, W + H, or W X H (Gillan et al., 1990). Perhaps the smaller of
W or H is appropriate because the lesser of the two extents seems more
indicative of the precision demands of the task. Another possibility is the span
of the target along an approach vector through the center. This distance, W',
is shown in Figure 9. Although untested, the latter idea is appealing in that
circles or other shapes of targets can be accommodated. It also has the
advantage of maintaining the one dimensionality of the model.’

9 A test of two-dimensional models for Fitts’ law can be found in MacKenzie and Buxton (in
press).
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Projecting 3D objects onto a 2D CRT display is common on today’s
bit-mapped graphic systems. It follows that input strategies are needed to
facilitate 3D interaction. A first-order solution is to map a 2D device into the
third dimension (e.g., Chen, Mountford, & Sellen, 1988; Evans, Tanner, &
Wein, 1981). Recent techniques include direct manipulation with an input
glove (Foley, 1987; Tello, 1988; Zimmerman, Lanier, Blanchard, Bryson, &
Harvill, 1987) or maneuvering a mouse in three dimensions (Ware & Baxter,
1989). Although no studies to date have employed Fitts’ law in 3D computer
interaction tasks, a need may arise as this mode of interaction matures.

4. COMPETING MODELS

The ultimate reason for building models (e.g., human performance
models) is that they facilitate the way we think about a problem. Models are
neither right nor wrong; only through their utility do they muster support in
the scientific community. Although unquestionably robust, the information-
processing analogy in Fitts’ law does not sit well for all.

Several competing and overlapping models, including Fitts’ law, are at the
forefront of current research pushing toward a general theory of motor
behavior. The following paragraphs extend the belief that a general model of
human movement should accommodate the extremes of temporal and spatial
constraints in movement tasks. There are classes of movements (e.g.,
drawing) that at present lack a paradigm for performance modeling. A new
model, perhaps incorporating Fitts’ law, could fulfill this need.

4.1. The Linear Speed-Accuracy Tradeoff

Of considerable interest recently is the linear speed-accuracy tradeoff
discovered by Schmidt and colleagues (Schmidt, Zelaznik, & Frank, 1978;
Schmidt, Zelaznik, Hawkins, Frank, & Quinn, 1979). The tradeoff, formally
the impulse variability model, forecasts that the standard deviation in endpoint
coordinates (viz., accuracy) is a linear function of velocity, calculated as
distance over time:

W, =a+ bAIMT. (13)

It is interesting that Equation 13 and Fitts’ law contain the same three
parameters (with the difference that W, is the standard deviation of endpoint
coordinates in Equation 13 and is 4.133 X SD in Fitts' adjusted model).
Although Equation 13 can be rearranged with M T as the predicted variable,
it is still fundamentally different from Fitts’ law because the relationship is
linear rather than logarithmic and because the information analogy is absent.
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Another difference is the nature of the tasks suited to each. The linear
speed-accuracy tradeoff is demonstrably superior to Fitts’ law for “temporally
constrained” tasks. The distinction is summmarized as follows. Under spatial
constraints, a move proceeds as quickly as possible and terminates within a
defined region of space (target width). This applies to Fitts’ tapping task.
Under temporal constraints, a move proceeds as accurately as possible and
terminates at a specified time. Targets are points or lines in temporally
constrained tasks. Subjects strike the target on time and avoid being too fast or
too slow.

In relation to computer input, temporally constrained tasks are of a
different genre. They include, for example, capturing moving targets and
real-time interaction (perhaps in a music performance system). The distinc-
tion between temporal and spatial constraints is by no means dichotomous.
Drawing, tracing, and inking have features of both: A user moves a tracking
symbol (cursor, cross, etc.) at an optimal velocity while attending to the
accuracy demands of the task. How should such tasks be modeled? Is the
focus on minimizing time (the dependent variable in Fitts’ law) or on
minimizing error (the dependent variable in Equation 13)?

The task of drawing is a simple example. The Keystroke-Level Model
(Card et al., 1980) provides a rough estimate of the time to draw a series of
line segments (¢, in ms) from the total length of the segments (/, in cm) and
the number of segments (np). The equation:

tp = 900 np, + 160 I, (14)

was offered as a restricted operator —dependent on the system, user, and
device—and was included only to extend the generality of the Keystroke-
Level Model to this class of movement tasks. Notably, accuracy is not
represented in the equation. One may anticipate ihat a class of models for
tasks with temporal constraints, such as drawing, may embody the linear
speed-accuracy tradeoff given in Equation 13.

4.2. Power Functions

Several power functions have been proposed including the following
general form (Kvalseth, 1980):

MT = a A* W~ (15)

A reanalysis of Fitts' (1954) data reveals that Equation 15 provides a higher
multiple correlation (R) than the single-factor correlation (r) using Fitts’
relationship. A test of positioning times using six cursor control devices also
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showed higher correlations using Equation 15 (Epps, 1986). Note, however,
that the improved fit is largely due to the extra degree of freedom. Equation
15 has three empirically determined constants; Fitts’ law has two. And as
noted earlier, a strength of Fitts’ model is the physical interpretation afforded
by the terms in the equation. A similar casting is difficult for g, 4, and ¢ in
Equation 15.

Several permutations of Equation 15 are possible. If 4 = —¢, then:

MT = a(A/W)°. (16)
Taking the base-2 logarithm of each side yields:

log, MT = log,a + blog,(A/W)
= d + blog,(A/W), 17)

which is similar to Fitts’ law except the log of movement time is the predicted
variable (T. B. Sheridan & Ferrell, 1963).

Another permutation, introduced by Meyer et al. (1988), sets the exponent
in Equation 16 to %2 and positions slope and intercept coefficients in the usual
place for linear regression:

MT = a + bJA/W. (18)

Equation 18, formally the stochastic optimized-submovement model, is supported by
a comprehensive theory on the random variability of neuromotor force
pulses. In a reanalysis of Fitts’ (1954) data, higher correlations were found
using Equation 18 than using Fitts’' law (Meyer et al., 1988); however, they
are not as high as those in Figure 6 using the Shannon formulation.

The model provides a unified conceptual framework encompassing both
the linear speed-accuracy model and Fitts’ log model. Meyer and colleagues
found that movements following the Fitts’ paradigm are composed of
submovements with durations, distances, and endpoint distributions con-
forming to the linear speed-accuracy model. This is an important link. A goal
of the stochastic optimized-submovement model is to reconcile the range of
spatial and temporal demands in human movement in a general theory of
motor behavior (Meyer et al., 1990). The promise for performance modeling
of user input to computers is a single model capable of expressing a wider
range of movement tasks.

5. APPLICATIONS OF FITTS LAW

A comprehensive review of research applying Fitts' law in studies on human
movement would be a monumental task. A quick tally from the Secial Sciences
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Figure 10. Discrete paradigm for Fitts’ law experiments (after Fitts & Peterson,
1964).
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Citation Index (SSCI) between 1970 and 1988 reveals 248 citations of Fitts’ 1954
article. Even this is not fully indicative of the widespread use of Fitts’ model
because a large body of research in fields such as medicine, sports, and
human factors is published in journals, books, and conference proceedings
not surveyed in the SSCI. The following review is cursory and quickly
proceeds to the relevant research in human factors and HCI.

5.1. The Generality of Fitts’ Law

Building on Fitts’ evidence that the rate of human information processing
is constant across a range of task difficulties, other researchers adopted the
model to determine /P in settings far removed from Fitts’ original theme. It
is evident in reviewing the literature that the new factors often confound the
problem of measurement. Numerous studies report vastly different measures
for very similar processes. ‘

In a study similar to Fitts’ initial report, Fitts and Peterson (1964) measured
IP for a “discrete” task in which subjects responded to a stimulus light and
tapped a target on the left or right. This experimental arrangement has been
widely adopted in subsequent research (see Figure 10).

In comparison to IP = 10.6 bits/s for “serial” or reciprocal tapping tasks
(Fitts, 1954), a rate of 13.5 bits/s was found for discrete tasks (after factoring
out reaction time; Fitts & Peterson, 1964). It is interesting that a difference of
2.9 bits/s surfaced for two tasks that are essentially the same, except for the
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serial versus discrete nature of the movements. Others have also found a
higher IP for discrete tasks over serial tasks (Megaw, 1975; Sugden, 1980).
Keele (1968) suggested that discrete tasks may yield a higher /P because they
exclude time on target, unlike serial tasks.

Besides the large number of studies cited in the previous section that tested
the validity of the model, many simply adopted the model as a tool to
investigate other issues. The role of visual feedback in controlling the
accuracy of movement has been the topic of many experiments using Fitts’
law (e.g., Carlton, 1981; Crossman, 1960; Glencross & Barrett, 1983; Keele
& Posner, 1968; Kvalseth, 1977; Meyer et al., 1988; Wallace & Newell,
1983). The usual method is to cut off visual feedback, a period of time after
a movement begins, and compare the period of feedback deprivation with
changes in accuracy, M7, or IP. It has been found that movements under
approximately 200 ms are ballistic and not controlled by visual feedback
mechanisms whereas those over 200 ms are.

Fitts’ law has performed well for a variety of limb and muscle groups. High
correlations appear in studies of wrist flexion and rotation (Crossman &
Goodeve, 1963/1983; Meyer et al., 1988; Wright & Meyer, 1983), finger
manipulation (Langolf et al., 1976), foot tapping (Drury, 1975), arm
extension (B. A. Kerr & Langolf, 1977), head movement (Andres & Hartung,
1989; Jagacinski & Monk, 1985; Radwin, Vanderheiden, & Lin, 1990), and
microscopic movements (W. M. Hancock, Langolf, & Clark, 1973; Langolf
& W. M. Hancock, 1975). Underwater experiments have provided a platform
for further verification of the model (R. Kerr, 1973; R. Kerr, 1978), as have
experiments with mentally retarded patients (Wade et al., 1978), patients with
Parkinson’s disease (Flowers, 1976) or with cerebral palsy (Bravo, LeGare,
Cook, & Hussey, 1990), the young (Jones, 1989; B. Kerr, 1975; Salmoni,
1983; Salmoni & Mcllwain, 1979; Sugden, 1980; Wallace et al., 1978), and
the aged (Welford et al., 1969). An across-species study verified the model in
the movements of monkeys (Brooks, 1979). It has been suggested that the
model would hold for the mouth or any other organ for which the necessary
degrees of freedom exist and for which a suitable motor task could be devised
(Glencross & Barrett, 1989).

Tabulating the results from these reports reveals a tremendous range of
performance indices, from less than 1 bit/s (Hartzell, Dunbar, Beveridge, &
Cortilla, 1983; Kvalseth, 1977) to more than 60 bits/s (Kvalseth, 1981). Most
studies report /P in the range of 3 to 12 bits/s.

5.2. Review of Six Studies

Despite the large body of research evaluating the performance of computer
input devices for a variety of user tasks, the discipline of HCI has not, as a
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rule, been a proving ground for Fitts’ law performance models. Most related
HCI research uses “task completion time” as the unit of study, with errors or
other measures reported in separate analyses. Two-factor repeated measures
experiments with several levels each for task and device are the norm (e.g.,
Buxton & Myers, 1986; English, Engelbart, & Berman, 1967; Ewing,
Mehrabanzad, Sheck, Ostroff, & Shneiderman, 1986; Goodwin, 1975;
Gould, Lewis, & Barnes, 1985; Haller, Mutschler, & Voss, 1984; Karat,
McDonald, & Anderson, 1984; Mehr & Mehr, 1972; Sperling & Tullis,
1988). See Greenstein and Arnaut (1988), Milner (1988), or Thomas and
Milan (1987) for reviews of this body of research.

Six Fitts’ law studies have been selected as relevant to the present
discussion. These are surveyed in reference-list order, focusing initially on the
methodology and empirical results. An assessment of the findings within and
across studies is deferred to the end.

Card, English, and Burr (1978)

This highly cited work stands apart from other investigations by nature of
its goal to transcend the simplistic ranking of devices and to develop models
useful for subsequent device evaluations. The idea is that, once a model is
derived, it can participate in subsequent designs by predicting performance in
different scenarios before design is begun.

Selection time, error rates, and learning time were measured in a routine
text-selection task using four devices: a mouse, an isometric joystick, step
keys, and text keys. The step keys moved the cursor up, down, left, or right
in the usual way, whereas the text keys advanced the cursor on character,
word, or paragraph boundaries. The joystick controlled the velocity and
direction of the cursor from the magnitude and direction of the applied force,
with negligible displacement of the stick.

For each trial, subjects pressed the space bar, homed their hand on the
cursor-control device, advanced the cursor to a word highlighted in a block of
text, then selected the word by pressing a button or key. Experimental factors
were device (four levels), distance to target (4s = 1, 2, 4, 8, and 16 cm),
target size (Ws = 1, 2, 4, and 10 characters; one character = 0.246 cm),
approach angle (0°-22.5°, 22.5°-67.5°, and 67.5°-90°), and trial block. IDs
ranged from —0.14 bits (4 = 1 cm, W = 10 characters) to 6.0 bits (4 = 10
cm, W = 1 character)— The negative index is discussed later. Target height
was held constant at 0.456 cm, the height of each character.

Using Welford’s variation of Fitts’ law, prediction equations were derived
for the two continuous devices. The least-squares regression equation pre-
dicting MT (in ms) for the mouse was:

MT = 1030 + 96 ID, (19)
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with JP = 10.4 bits/s (r = .91, SE = 70 ms), and for the joystick,

MT = 990 + 220 ID, (20)
with 7P = 4.5 bits/s (r = .94, SE = 130 ms).

Mean MT was lowest for the mouse (1660 ms, SD = 480 ms) despite the
fact that mean homing time was highest (360 ms, SD = 130 ms). The joystick
was a close second (M7 = 1830 ms, SD = 570 ms), followed by the text keys
(MT = 2260 ms, SD = 1700 ms) and step keys (MT = 2510 ms, SD = 1640
ms).

Error rates ranged from 5% for the mouse to 13% for the step keys.
Approach angle did not affect mean movement time for the mouse, but it
increased movement time by 3% for the joystick when approaching a target
along the diagonal axis.

Drury (1975)

Welford’s variation of Fitts’ law was evaluated as a performance model in
a study of foot pedal design. Using their preferred foot, subjects tapped back
and forth between two pedals for 15 cycles (30 taps). Six different amplitudes
(4s = 150, 225, 300, 375, 523, and 675 mm) were crossed with two pedal
sizes (Ws = 25 and 50 mm). The mean width of subjects’ shoes (108.8 mm)
was added to target width as a reasonable adjustment because any portion of
a shoe touching the target was recorded as a hit. As such, /Ds ranged from
0.53 to 2.47 bits. With 4 = 150 mm and W = 50 + 108.8 = 158.8 mm, the
task difficulty was calculated as log,(150.0/158.8 + 0.5) = 0.53 bits. This is
an extremely relevant example of a task condition in which an index of
difficuity less than 1 bit is perfectly reasonable. In effect, the targets were
overlapping.

The correlation between MT and ID was high (r = .970, p < .01), with
regression line coefficients of 187 ms for the intercept and 85 ms/bit for the
slope (IP = 11.8 bits/s). Overall error rates were not reported, but blocks with
more than one miss were repeated; thus, by design, the error rate was less
than 3.3%.

Epps (1986)

Six cursor-control devices were compared in a target-selection task with
performance models derived using Fitts’ law, a power model (Equation 15),
and the following first-order model proposed by Jagacinski, Repperger,
Ward, and Moran (1980):

MT =a + bA + VW — 1). (21)
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Device types included two touchpads (relative and displacement), a trackball,
two joysticks (displacement and force; both with ..iocity control), and a
mouse. For each trial, subjects moved a cross-hair tracker to a randomly
positioned rectangular target and selected the target b pressing a button.
Target distance varied across four levels (As = 2, 4, 8, and 16 cm) and target
size across five levels (Ws = 0.13, 0.27, 0.54, 1.07, and 2.14 cm), yielding
IDs from 0.90 to 6.94 bits.

The power model provided the highest (multiple) correlation with MT
across all devices, with the first-order model providing higher correlations for
some devices but not others. The correlations throughout were low, however,
in comparison to those usually found. Using Fitts’ equation, r ranged from
.70 for the relative touchpad to .93 for the trackball. Intercepts varied from
—587 ms (force joystick) t» 282 ms (trackball). The values for IP, ranging
from 1.1 bits/s (displacement joystick) to 2.9 bits/s (trackball), are among the
lowest to appear in Fitts’ law experiments.

If an error was committed, subjects repositioned the cursor inside the target
and pressed the select button again. Although the frequency of this behavior
was not noted, presumably these trials were entered in the analysis using the
total time for the operation.

Jagacinski and Monk (1985)

Fitts’ law was applied to a target-acquisition task using a displacement
joystick for position control and a head-mounted sight using two rotating
infrared beams. Each trial began with the cursor in the middle of the display
and the appearance of a circular target on the screen. Subjccts moved the
cursor to the target and selected it. On-target dwell time (344 ms), rather than
a button push, was the criterion for target selection.

Experimental factors were device (two levels), target distance (4s = 2.45°,
4.28°, and 7.50° of visual angle), target size (Ws = 0.30°, 0.52°, and 0.92°
for the joystick; Ws = 0.40°, 0.70°, and 1.22° for the helmet-mounted
sight), and approach angle (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°).
Task difficulties ranged from 2.0 to 5.6 bits for the helmet-mounted sight.
Correlations between M7 and ID were very high (r = .99) for both devices,
with regression coefficients for the intercept of —268 ms (helmet-mounted
sight) and — 303 ms (joystick). The regression line slope for both devices was
199 ms/bit (IP = 5 bits/s). Mean MTs were slightly longer along the diagonal
axes for the joystick (7.2%) and for the helmet-mounted sight (9.1%).
Because the seiection criterion was dwell time inside the target, errors could
not occur.

Kantowitz and Elvers (1988)

Fitts law was evaluated as a performance model for two isometric
joysticks—one for cursor position control, the other for cursor velocity
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control. Each trial began with the appearance of a square target in the center
of the screen and an asterisk pre-cursor on either side that tracked the applied
force of the joystick. When the pre-cursor changed to a cross-hair cursor, the
subject moved it to the target and selected the target. A trial terminated if the
cursor remained stationary (+ 3 pixels) for 333 ms, the horizontal direction of
movement changed, or 4 s elapsed. Experimental factors were device (two
levels), target distance (As = 170, 226, and 339 pixels), target size (Ws = 20
and 30 pixels), and CD gain (high and low). Four target distance/size
combinations were chosen with IDs ranging from 3.5 to 5.5 bits.

The velocity-control joystick regression line had a steeper slope, and
therefore a lower /P, than the position-control joystick (I/Ps = 2.2 bits/s vs.
3.4 bits/s, respectively). There was no main effect for CD gain; for each
device, the high and low gain regression lines were parallel. The intercepts,
however, were large and negative. Under high-gain and low-gain conditions,
respectively, intercepts were —328 and —447 ms under position control and
—846 and —880 ms under velocity control. Correlations ranged from .62 to
.85. The average error rate was very high (around 25%), although figures
were not provided across factors.

Ware and Mikaelian (1987)

Welford’s variation of Fitts’ law was applied to positioning data from a
celection task using an eye tracker (fulf and Western series 1900). A
cross-hair cursor positioned on a CRT display was controlied by the reflection
from subjects’ cornea of an infrared source. Targets were selected by three
methods: a hardware button, dwell time on target (400 ms), or an on-screen
button. Seven rectangles (3.2 cm X 2.6 cm) were presented to the subjects in
a vertical row. After fixating on the center rectangle for 0.5 s, one of the seven
became highlighted, whereupon subjects immediately fixated on it:and
selected it.

The application of Fitts’ law in this study is weak. Target size was kept
constant (2.6 cm), but distance was varied over four levels (U, 2.6, 5.2, and
7.8 cm). Although IDs ranged from —1.0 bit to 1.8 bits, no rationale was
provided for the negative index at A = 0 cm, calculated as log,(0/2.6 + 0.5)
= —1 bit.'” Correlations and regression coefficients were omitted in lieu of
a scatter plot of MT versus ID with regression lines for each selection
technique. For the purpose of this survey, equations were inferred from the
plots. Intercepts ranged from 680 to 790 ms, and slopes ranged from 73 to 107
ms/bit. The highest IP was for the hardware button condition (13.7 bits/s),
and the lowest was for dwell time (9.3 bits/s).

Error rates were high, ranging from 8.5% (hardware button) to 22%
(on-screen button). As the investigators noted, an eye tracker can provide fast

'% Note that the unusual choice of A = 0 as an experimental condition precludes the use of
Fitts’ equation, because log,0 is undefined.
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cursor positioning and target selection, as long as accuracy demands are
minimal.

5.3. Across-Study Comparison of Performance Measures

We now proceed with the task of assessing the findings and comparing
them across studies. Figure 11 tabulates for each device condition the
regression coefficients, the MT-ID correlation, and the percentage errors.
Both the slope and /P are provided for convenience, as are the values from
Fitts’ (1954) tapping experiment with a 1-oz stylus (see Figures 2 and 3). The
entries are ordered by decreasing IP. This is not the same as ordering by
increasing M T because the intercepts also contribute to MT. It is felt that IP
is more indicative of the overall performance of a device and that normalizing
the intercepts is reasonable for this comparison.

The presence of nine negative intercepts in Figure 11 is the first sign of
trouble. A negative intercept implies that, as tasks get easier, a point is
reached where the predicted movement time is negative. This, of course, is
nonsense and indicates a flaw in the application of the model or the presence
of uncontrolled variations in the data. Beyond this, the most notable
observation is the overall lack of consensus in the measures. The spread of
values is astonishing: Performance indices range from 1.1 to 13.7 bits/s, and
intercepts range from —880 to 1030 ms. These values, however, probably do
not truly reflect the innate differences in the devices. Although differences are
expected across devices, similar measures should emerge in the figure where
different entries are for the same device.

For example, the mouse was evaluated by Card et al. (1978) and Epps
(1986). The former cite JP = 10.4 bits/s whereas the latter cites IP = 2.6
bits/s. These values differ by a factor of four! Also, the intercepts differ by
922 ms. So, what is the Fitts’ law prediction equation for the mouse? The
answer is up for debate.

Also, an isometric, velocity-control joystick was tested by Card et al.
(1978), Epps (1986), and Kantowitz and Elvers (1988). Again, the outcome is
disturbing. In the order just cited, the intercepts were reported as 990, —587,
and 863 ms (average), and /P was reported as 4.5, 1.2, and 2.2 bits/s. It seems
that the goal cited earlier—to develop models for evaluating devices and
interaction techniques prior to implementation — remains elusive.

5.4. Sources of Variation

We can attempt to reconcile the differences by searching out the major
sources of variation. Indeed, some of these are nascent traits of direct
manipulation systems (rather than quirks in methodology) and, therefore, are
particularly pertinent to the context of HCI. Identifying these provides a basis
for evaluating and comparing studies. When disparities emerge, it may be
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possible to adjust measures or to predict comparative outcomes under
hypothetical circumstances.

Device Differences

If the research goal is to establish a Fitts’ law (or other) performance model
for two or more input devices, then the only source of variation that is
desirable is the between-device differences. This is what the investigations are
attempting to measure. Accomplishing this assumes, somewhat unrealisti-
cally, that all other sources of variation are removed or are controlled for. Of
course, very few studies are solely interested in device differences. Sources of
variation become factors in many studies—equally as important to the research
as model fitting across devices.

We can cope with the disparity in Figure 11 by looking for across-study
agreement on within-study ranking rather than comparing absolute measures.
The mice and velocity-control isometric joysticks evaluated by Card et al.
(1978) and Epps (1986) provide a simple example. The index of performance
was higher for the mouse than for the joystick within each study. One could
conclude, therefore, that the mouse is a better performer (using /P as the
criterion) than the joystick, even though the absolute values are deceiving.
(Note that the joystick in Card et al.’s study yielded a higher IP than the
mouse in Epps study.) Furthermore, the differences between devices ex-
pressed as a ratio was about the same: IP was higher for the mouse than for
the joystick by a factor of 10.4/4.5 = 2.3 in Card et al.’s (1978) study and by
a factor of 2.6/1.2 = 2.2 in Epps’ (1986) study.

Just as the units disappear when the ratio of the performance indices is
formed, so too may systematic effects from other sources of variation,
including a myriad of unknown or uncontrolled factors present in an
experiment. Indeed, experiment differences are evident in Figure 11: Epps’
(1986) and Kantowitz and Elvers’ (1988) studies showed low values for IP,
whereas Card et al.’s (1978) and Drury’s (1975) studies showed high values.
Thus, relative differences within studies gain strength if across-study con-
sensus can be found.

A larger sample of studies would no doubt reveal across-study consensus on
other performance differences. The performance increment found in
Kantowitz and Elvers’ (1988) study for the position-control joystick over the
velocity-control joystick, to cite one example, was noted in another study not
in the survey (Jagacinski, Repperger, Moran, Ward, & Glass, 1980)."

We should acknowledge as performance determinants the range of muscle

! The ratio of performance differences was also the same: IP for the position-control system
was higher than IP for the velocity-control system by a factor of 3.2/2.2 = 1.5 in Kantowitz and
Elvers’ (1988) study and by a factor of 5.9/3.9 = 1.5 in Jagacinski, Repperger, Moran, Ward,
and Glass’ (1980) study. (In the latter study, the values cited were averaged over the dwell time
and steadiness criteria for target capture.)
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and limb groups engaged by different manipulators. Because smaller limb
groups (e.g., wrist vs. arm) have shown higher ratings for IP (Langolf et al.,
1976), performance increments are reasonable when complex arm move-
ments are avoided. With fewer degrees of freedom for the head or eyes than
for the arm, the relatively high rates for the eye tracker and helmet-mounted
sight in Figure 11 may be warranted. This does not, however, account for the
high ranking of the foot pedals.

It is felt that Fitts’ law performance differences can be attributed to other
characteristics of devices, such as number of spatial dimensions sensed (one,
two, or three) or property sensed (pressure, motion, or position); however,
our sample is too small to form a basis for generalization. Besides, the studies
surveyed may contain stronger sources of variation.

Task Differences

It is naive, perhaps, to suggest that there exists a generic task that can
accommodate simple adjustments for other factors, such as device. One
might argue that Fitts’ tapping task is remoie and inappropriate: It is not a
particularly common example of user interaction with computers. Its one-
dimensional simplicity, however, has advantages for model building, not the
least of which is access to a substantial body of research. For example, there
is evidence that a serial task yields an index of performance 2 to 3 bits/s lower
than a similar discrete task (e.g., Fitts & Peterson, 1964). Discrete tasks may
be more akin to direct manipulation systems, but experiments are easier to
design and conduct using a serial task. Knowledge of a 2- to 3-bit/s increment
for discrete operation after conducting a serial task experiment is a valuable
resource for researchers.

Of the six studies surveyed, all but one used a discrete task. Drury’s (1975)
serial foot-tapping experiment yielded /P = 11.8 bits/s, but it may have
shown a rate around 14 bits/s had a discrete task been used. Although this
would tend to disperse further the rates in Figure 11, indices in the 15- to
20-bits/s range are not uncommon in Fitts’ law studies.

Five of the six studies used a simple target-capture task, and one (Card et
al., 1978) used a text-selection task. The cognitive load on subjects may have
been higher in the latter case due to the presence of additional text on the
screen. Perhaps the burden of finding and keeping track of highlighted text
within a full screen of text continued throughout the move. This task
difference would reduce performance, bu* one can only speculate on where
the effect would appear. The evidence leans toward the intercepts because
they were highest in this study (1030 and 990 ms).

Selection Technique

The method of terminating tasks deserves separate analysis from other
aspects of tasks. In the studies by Card et al. (1978) and Epps (1986), the
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target-selection button for all devices except the mouse was operated with the
opposite hand from that which controlled the device. Ware and Mikaelian
(1987) also used a separate hand-operated button as one of the selection
conditions with the eye tracker. There is evidence that task completion times
are reduced when a task is split over two hands (e.g., Buxton & Myers, 1986),
suggesting that parallel cognitive strategies may emerge when positioning and
selecting are delegated to separate limbs. This may explain the trackball’s
higher IP over the mouse in Epps’ (1986) experiment — The mouse task was
one-handed, the trackball task was two-handed. Unfortunately, this specula-
tion does not extend to Card et al.’s (1978) study where IP was significantly
higher for the mouse (one-handed) than for the joystick (two-handed).

Conversely, and as mentioned earlier, target-selection time may be additive
in the model, contributing to the intercept of the regression line but not to the
slope. This argument has some support in Epps’ (1986) study where the
intercept is second highest out of five for the mouse, where an additive effect
would appear. Both the mouse and the joystick yielded similar intercepts in
Card et al.’s (1978) study, thus lending no support either way.

There are presently versions of each device that permit device manipulation
and target selection with the same limb. Therefore, a Devices X Mode of
Selection experiment could examine these effects on the intercept and slope in
the prediction equation. In fact, mode of selection was a factor in Ware and
Mikaelian’s (1987) study. Based on this study, one would conclude that IP
increases when selection is delegated to a separated limb (as it did for the
hardware button condition vs. the dwell time or on-screen button conditions;
see Figure 11).

Range of Conditions and Choice of Model

In Fitts’ (1954) tapping experiments, subjects were tested over four levels
each for target amplitude and target width with the lowest value for target
amplitude equal to the highest value for target width (see Figure 2). In all,
subjects were exposed to 16 A- W conditions with IDs ranging from 1 to 7 bits.
Figure 12 tabulates the range of target conditions employed in the studies
surveyed.

Some stark comparisons are found in Figure 12. Kantowitz and Elvers
(1988) and Ware and Mikaelian (1987) limited testing to four A- W conditions
over a very narrow range of IDs (2.00 bits and 2.80 bits, respectively).
Although Drury (1975) used 12 A-W conditions, the range of IDs was only
1.94 bits. This resulted because the spreads for 4 and W were small. Despite
using six levels for A4, the ratio of the highest value to the lowest value was only
4.5, and the same ratio for W was only 1.2. (When a scatter plot is limited to
a very narrow range, one can imagine a line through the points tilting to and
fro with a somewhat unstable slope!) The narrow range of IDs in Kantowitz
and Elvers’ (1988) study, combined with the observation that the lowest ID
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was very high (3.50 bits), could explain the large negative intercepts. (After
traveling 3.5 bits to the origin, a line swiveling about a narrow cluster of
points could severely miss its mark!) It is also worth noting that the predicted
movement time when ID = 1 bit with Kantowitz and Elvers’ (1988)
velocity-control joystick under low-gain conditions is 449(1) — 880 = —431
ms. Although 7D = 1 bit is not unreasonable (e.g., see Figure 2), a negative
prediction for movement time is. Had this experiment included a wider range
of IDs, extending down to around 1 bit, the regression line intercepts would
have been higher and the slopes would have been lower.

Card et al. (1978) and Epps (1986) used a reasonable number of conditions
(20 and 9, respectively) over a wide range of task difficulties (6.18 and 6.04
bits, respectively). These represent a strong complement of conditions that
should yield results bearing close scrutiny.

Although a nonzero intercept can be rationalized a variety of ways, the
studies by Card et al. (1978) and Ware and Mikaelian (1987) present a special
problem. In these, IDs < 0 bits represent conditions that actually occurred; thus,
it is certain that an appreciable positive intercept results. A contributing
factor in the Card et al. (1978) study is the confounding approach angle
(discussed later). In both studies, however, the negative IDs would disappear
simply by using Shannon’s formulation for ID (Equation 10). This would
reduce the regression line intercepts because the origin would occur left of the
tested range of [Ds (where it should) rather than in the middle.

It is also possible that Fitts’ law is simply the wrong model in some
instances. Card et al. (1978) noted in the scatter plot for the joystick a series
of parallel lines for each target amplitude condition. Certainly, this is not
predicted in the model: 4 and W play equal but inverse roles, and, at a given
ID, only random effects should differentiate the outcomes. Noting the
systematic effect of amplitude, separate prediction equations were devised for
each value of A. The result was a series of parallel regression lines with slopes
around 100 ms/bit (/P = 10 bit/s) and with intercepts falling as 4 decreased.
With this adjustment, the joystick and mouse IPs were about the same.
However, this is a peculiar situation for the model—In essence, target
amplitude ceases to participate.

The range of conditions also bears heavily on the coefficient of correlation.
Although r is extremely useful for comparisons within a study, across-study
comparisons are all but impossible unless the conditions are the same. It can
be shown statistically that correlations are uncharacteristically low when a
sample is drawn from a restricted range in a population (Glass & Hopkins,
1984, p. 92). This could explain the relatively low correlations in Figure 11 for
Kantowitz and Elvers’ (1988) study.

The extent of data aggregation also affects . In the vast majority of Fitts’
law studies, movement times are averaged across subjects and a single data
point is entered into the analysis for each A- W condition. Epps (1986) did not
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average across subjects and entered 240 data points into the analysis (12
Subjects X 5 Amplitudes X 4 Widths). The extra variation introduced is
likely the cause of the relatively low correlations in this study.

Approach Angle and Target Width

In the Card et al. (1978) study, the use of approach angle as an
experimental factor in conjunction with the consistent use of wide, short
targets (viz., words) provides the opportunity to address directly a theoretical
point raised earlier: What is target width when the approach angle varies?

When target distance was 1 cm and target width was 10 characters (2.46
cm), ID was calculated in this study using Welford’s formulation as log,(4/W
+ 0.5) = logy(1/2.46 + 0.5) = —0.14 bits. This troublesome value,
although not explicitly cited, appeared in the scatter plot of MT versus ID
(Figure 6, p. 609). Because character height was 0.456 cm, a better measure
of ID may have been log,(1/0.456 + 0.5) = 1.43 bits.'> With a slope of 96
ms/bit for the mouse regression line, this disparity in IDs increases the
intercept by as much as [1.43 — (—0.14)] X 96 = 151 ms. The contribution
could be even more in a regression analysis using W, because adjusting target
width generally increases the regression line slope and increases ID for easy
tasks (see Figures 6 and 7).

Thus, the negative IDs and the very large intercepts in the Card et al.
(1978) study are at least partially attributable to the one-dimensional limita-
tions in the model and to the use of a formulation for ID that allows for a
negative index of task difficulty. As the investigators noted, however, the time
spent in grasping the device at the beginning of a move and the time for the
final button-push were also contributing factors.

Epps (1986) and Jagacinski and Monk (1985) also varied approach angle.
Because the targets were squares or circles, however, there is no obvious
implication to the calculation of task difficulty or to the regression coeffi-
cients.

Error Handling

Response variability (viz., errors) is an integral part of rapid, aimed
movements. Unfortunately, the role of accuracy is often neglected in the
application of Fitts’ law. Jagacinski (1989, p. 139) noted the following:

It is difficult to reach any conclusions when one system has exhibited
faster target acquisitions, but has done so with less accwracy in
comparison with another system. Both systems might have the same

2 Using the Shannon formulation (Equation 10), the index of task difficulty under these
conditions is further increased: ID = log,(1/0.456 + 1) = 1.67 bits.
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speed-accuracy function, and the experimental evaluation might have
simply sampled different points along this common function.

A simple way out of this dilemma is to build the model using W_ in the
calculation of ID. The adjustment normalizes target width for a nominal error
rate of 4%, as described earlier. However, none of the studies surveyed
included the adjustment. Unfortunately, post hoc adjustments cannot be
pursued at this time because error rates across levels of 4 and W were not
reported. Although speculation is avoided on possible adjustments to the
regression coeflicients, it is instructive to review the strategies adopted for
error handling.

Card et al. (1978) excluded error trials from the data analysis. Drury (1975)
included errors in the data analysis however, only 1 miss in a block of 30 trials
was permitted; otherwise, the block was repeated. Although Kantowitz and
Elvers (1988) and Ware and Mikaelian (1987) reported very high error rates
(up to 25%), it was not stated if error trials were included in the regression
analyses — presumably they were.

In Kantowitz and Elvers’ (1988) study, subjects were not allowed to reverse
the horizontal direction of movement. If a reversal was detected, the trial
immediately terminated and a miss was recorded if the cursor was outside the
target. This precludes potential accuracy adjustments at the end of a trial,
which, no doubt, would increase movement time.

Jagacinski and Monk (1985) and Epps (1986) introduced selection criteria
whereby errors could not occur—A trial continued until the target was
captured. If the cursor was outside the target when the select button was
pressed, subjects in Epps’ (1986) study repositioned the cursor and reselected
the target. Although the frequency was not reported, the inclusion of trials
exhibiting such behavior is most unusual.

Learning Effects

Learning effects are a nagging, ubiquitous source of variation in experi-
ments that seek to evaluate “expert” behavior. Often, research pragmatics
prevent practicing subjects up to expert status. Fortunately, Fitts’ serial or
discrete paradigm is extremely simple, and good performance levels are
readily achieved. Of the six studies surveyed, three made no attempt to
accommodate learning effects. Of those that did, each used a different
criterion to establish when asymptotic or expert levels were reached. The most
accepted statistical tool for this is a multiple comparisons test (e.g.,
Newman-Keuls, Scheff¢, or Tukey) on mean scores over multiple sessions of
testing (Glass & Hopkins, 1984, chap. 17).

Only Epps (1986) included such a test. Although the design was fully within
subjects, only 2 hr of testing were needed for each subject. This was sufficient
to cross all levels of device (six), session (five), amplitude (four), and width
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(five). Subjects were novices and were given only two repetitions of each
experimental condition; yet a multiple comparisons test (Bonferroni’s ¢ test;
see Glass & Hopkins, 1984, p. 381) showed no improvement overall or for any
device after the second session. The data analysis was based on Sessions 3 to
5.

Jagacinski and Monk (1985), who practiced subjects for up to 29 days, used
the criterion of 4 successive days with the block means on each day within
3.5% of the 4-day mean. Card et al. (1978) developed a similar criterion
based on a ¢ test.'?

5.5 Summary

Other sources of variation abound. Among these are the instructions to
subjects, thc number of repetitions per condition, the order of administering
devices, the sensitivity of device transducers, the resolution and sampling rate
of the measuring system, the update rate of the output display, and CD gain.
However, our analysis will not extend further. The discussions on error
handling and learning effects highlighted the vastly different strategies
employed by researchers, but speculating on the effect of these in the model
is digressive. These and other sources are felt to introduce considerable
variation but with effects that are, for the most part, random. Systematic
effects may be slight, unanticipated, or peculiar to one design.

The range of conditions selected at the experimental design stage is a major
source of variation in results. Experiments can benefit by adopting a wide and
representative range of A-W conditions (e.g., 1 to 7 bits; see Figure 2). This
done, the investigators can proceed to build valid information-processing
models when other factors such as device or task are added. Adopting the Fitts
paradigm for serial tasks (Figure 1) or discrete tasks (Figure 10) offers the
benefit of a simple experimental setup and invites access to a large body of
past research.

Experiments that vary approach angle and use rectangular or other long
and narrow targets can avoid a negative task difficulty by using the Shannon
formulation of Fitts’ law (see Equation 10 and Figure 4) and/or by adopting
a new notion of target width in the calculation of ID (see Figures 8 and 9).
Extending the model to accommodate varying approach angles and target
shapes is one area in need of further research, particularly in light of the 2D
nature of user input tasks on computers.

The variety of schemes to terminate tasks and select or acquire a target
undoubtedly affects the outcome of a regression analysis. There are reason-

'3 ¢ tests are not as reliable as multiple comparisons tests when more than two means (blocks)
are compared. The alpha (probability of a Type I error) associated with the ¢ statistic is higher
than predicted (Glass & Hopkins, 1984, p. 369).
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able grounds for expecting a distinct, additive component to appear in the
intercept; however, evidence is scant and inconclusive. Further research is
needed.

A major deficiency in the application of Fitts’ law in general is the absence
of a sound and consistent technique for dealing with errors. Although not
demonstrated in any of the studies surveyed, the model can be strengthened
using the effective target width in calculating ID (see Figure 5). Doing so
normalizes response variability (viz., errors) for a2 nominal error rate of 4%.
This theoretically sound (and arguably vital) adjustment delivers consistency
and facilitates across-study comparisons. The adjustment can proceed using
the error rate or the standard deviation in endpoint coordinates, as shown
earlier.

Experiments are strengthened by practicing subjects until a reasonable
criterion for expert performance is met. The three studies that tested for
learning effects did so using mean movement times. It may be appropriate to
also test subjects’ rate of information processing (viz., IP) as a criterion
variable. This test could be strengthened using W_ in the calculation of ID (see
Figure 2) to accommodate both the speed and accuracy of performance. The
direct method of calculating IP (viz., IP = ID/MT; see Figure 2) is easier and
probably better because it nulls the intercept, blending the effects into IP.
This would accommodate separate, distinct learning effects for the intercept
that would be unaccounted for if I[P = 1/ (from a regression analysis) were
used.

The prediction equations in the Fitts’ law studies surveyed reveal large
inconsistencies, making it difficult to summarize and offer de facto standard
prediction equations for any of the devices tested. Despite high correlations
(usually taken as evidence of a model’s worth), the failings in across-study
comparisons demonstrate that extracting a Fitts’ law prediction equation out
of a research article and embedding it in a design tool may be premature as
yet.

6. CONCLUSIONS

As human-machine dialogues evolve and become more direct, the pro-
cesses and limitations underlying our ability to execute rapid, precise
movements emerge as performance determinants in interactive systems.
Powerful models such as Fitts’ law can provide vital insight into strategies for
optimal performance in a diverse design space.

This article has examined the theory, prediction power, and relevance of
Fitts’ law, citing its limitations and suggesting improvements. A survey of six
studies has shown that applying the model and obtaining consistent results is
not easy. Major sources of variation have been identified, and some
suggestions in experimental design and methodology have been offered to
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ensure the worth of future studies. Certainly more research — much more —is
due. It has been shown that a post hoc adjustment on target width (for a
nominal error rate of 4%) and the use of a more theoretically sound equation
(Equation 10) can improve the power of the model and avoid erroneous
predictions. These issues plus a proper understanding of device-task associ-
ations play a vital role in the development of Fitts’ law performance models
capable of participating in the design of natural, efficient human-computer
interfaces.
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